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• Eta functions: These functions are a powerful tools for deriving the
approximation of functions with trigonometric or hyperbolic variation
which have oscillatory character.
• Eta-based function: The new set of based functions, the Eta-based
function, has been introduced using the Eta functions. An essential
property of the Eta-based functions is that they tend to the polynomial
when the involved frequencies tend to zero. Thus, the Eta-based
functions are suitable for attaining a good approximation of high
oscillatory functions and polynomials.
• Orthogonal polynomials: These polynomials play the most important
role in spectral methods and, therefore, it is necessary to highlight
their relevant properties.
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The gamma function is used extension of the factorial function to
complex numbers. The gamma function is defined for all complex
numbers except the non-positive integers as:

Gamma function

Γ(z) =

∫ ∞
0

e−ttz−1dt, Rez > 0. (1)

By using integration by parts we find that

Γ(z + 1) = zΓ(z), Rez > 0. (2)

Further we have

Γ(1) =

∫ ∞
0

e−tdt = − e−t
∣∣∞
0

= 1. (3)

Combining (2) and (3), this leads to

Γ(n+ 1) = n!. (4)
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The beta function B(u, v) is also defined by means of an integral:

Beta function

B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt, Reu > 0, Rev > 0. (5)

The connection between the beta function and the gamma function is
given by the following theorem:

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
, Reu > 0, Rev > 0. (6)

In order to prove this theorem we use the definition (1) to obtain

Γ(u)Γ(v) =

∫ ∞
0

e−ttu−1dt

∫ ∞
0

e−tsv−1ds =

∫ ∞
0

∫ ∞
0

e−(t+s)tu−1 sv−1dt ds .

(7)
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Now we apply the change of variables t = xy and s = x(1− y) to this
double integral. Note that t+ s = x and that 0 < t <∞ and
0 < s <∞ imply that 0 < x <∞ and 0 < y < 1. The Jacobian of this
transformation is

∂(t, s)

∂(x, y)
=

∣∣∣∣ y x
1− y −x

∣∣∣∣ = −x.

Hence we have

Γ(u)Γ(v) =
∫ 1

0

∫∞
0 e−xxu−1 yu−1xv−1 (1− y)v−1x dx dy

=
∫∞

0 e−xxu+v−1dx
∫ 1

0 y
u−1(1− y)v−1dy = Γ(u+ v)B(u, v).
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For real parameters p1, ..., pα and q1, ..., qβ
(qj 6= 0,−1,−2, ... j = 1, ..., β), we define the generalized
hypergeometric function αFβ(p1, ..., pα; q1, ..., qβ;Y ) according to

Generalized hypergeometric functions

αFβ(p1, ..., pα; q1, ..., qβ;Y ) =

∞∑
k=0

(p1)k...(pα)k
(q1)k...(qβ)k

Y k

k!
, (8)

where (p)k is the Pochhammer symbol defined, in terms of the Gamma
function Γ(.), by

(p)0 = 1, (p)k = p(p+1)(p+2)...(p+k−1) = Γ(p+k)/Γ(p), k ∈ N.
(9)

If α ≤ β, the series is absolutely convergent for all values of Y , if
α = β + 1, the series is convergent for |Y | < 1 and for |Y | = 1 the series
is conditionally convergent. If α > β + 1, the series is divergent.
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The Bessel function of the first kind of real order µ has the series
expansion as stated in

Bessel functions

Jµ(Y ) =

∞∑
k=0

(−1)k

k!Γ(k + µ+ 1)
(
Y

2
)2k+µ. (10)

The infinite series in equation (10) will converge for all values of Y .
The modified Bessel functions of the first kind are defined by

Iµ(Y ) = i−µJµ(iY ), (11)

where i =
√
−1 is the complex unit. It is easy to show the modified

Bessel functions of the first kind are a real function of Y .
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Eta functions, denoted by ηn(Y ), n > 0 and Y 6= 0, are defined in
terms of the recurrence relation (12)

Eta Functions

ηn(Y ) =
ηn−2(Y )− (2n− 1)ηn−1(Y )

Y
, n = 1, 2, 3, ... (12)

where

η−1(Y ) =

{
cos(|Y |

1
2 ) Y ≤ 0,

cosh(Y
1
2 ) Y > 0,

η0(Y ) =


sin(|Y |

1
2 )

|Y |
1
2

Y < 0,

1 Y = 0,

sinh(Y
1
2 )

Y
1
2

Y > 0.

(13)
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These functions have the following values at Y = 0 :

ηn(0) =
1

(2n+ 1)!!
, n = 1, 2, ... (14)

where !! is a double factorial. Eta functions have some well-known
properties such as:

Series expansion:

ηn(Y ) = 2n
∞∑
k=0

(k+n)!
(2k+2n+1)!

Y k

k!

= 2−(n+1)√π
∞∑
k=0

1
Γ(k+n+ 3

2
)

(Y
4

)
k

k! , n = 0, 1, ...

(15)
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Differentiation properties of Eta functions is defined as

Differentiation properties

η′n(Y ) =
1

2
ηn+1(Y ), n = −1, 0, 1, 2, ... (16)

ηn(Y ), (n = 0, 1, 2, ...) is the suitably normalized regular solution of
differential equation (17)

Differentiation properties

Y z′′ +
1

2
(2n+ 3)z′ − 1

4
z = 0. (17)
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Lemma

The Eta-functions can be defined by the Bessel functions as

ηn(−x2) =
√

π
2x
−(n+ 1

2
)Jn+ 1

2
(x)

ηn(+x2) =
√

π
2x
−(n+ 1

2
)In+ 1

2
(x)

(17)

Theorem 1: (Generating function)

The generating function of the Eta functions is obtained according to
Eq. (18) as √

π

2
e
t
2

+ Y
2t × 1√

t
Erf

√
t

2
=

∞∑
n=0

ηn(Y )tn, (18)
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where Erf , is an Error function (also called probability integral) as
stated in Eq. (19)

Error function

Erf t =
2√
π

∫ t

0
e−s

2
ds =

2√
π
e−t

2
∞∑
γ=0

2γt2γ+1

(2γ + 1)!!
. (19)
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Proof : Using the Taylor series of e
Y
2t and Eq. (19) we have√

π
2 e

t
2

+ Y
2t × 1√

t
Erf

√
t
2 =

(
e
Y
2t

)
×
(√

π
2 e

t
2 × 1√

t
Erf

√
t
2

)

=

( ∞∑
ν=0

( Y2t)
ν

ν!

)(√
π
2 e

t
2 × 1√

t
× 2√

π
e−

t
2

∞∑
γ=0

2γ( t2)
2γ+1

2

(2γ+1)!!

)

=
∞∑
ν=0

( Y2t)
ν

ν!

∞∑
γ=0

(t)γ

(2γ+1)!!

=

∞∑
ν=0

(
Y
2t

)ν
ν!

∞∑
γ=0

γ!(2t)γ

(2γ + 1)!
=

∞∑
ν,γ=0

2γ−νγ!

(2γ + 1)!ν!
Y νtγ−ν , (20)

now we want to pick out the coefficient of tn in this expansion. For a
fixed value of γ the coefficient of tn is obtained by taking
γ − ν = n, i.e., γ = ν + n. Thus, for this special value of γ in Eq. (20),
the coefficient of tn can be obtained from the following relation
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2nγ!

(2γ + 1)!(γ − n)!
Y γ−n = the coefficient of tn. (21)

The total coefficient of tn in Eq. (20) is obtained by summing over all
allowed values of γ. Since ν = γ − n and ν ≥ 0, we should have γ ≥ n
so using Eq. (21), the total coefficient of tn will be as

∞∑
γ=n

2nγ!

(2γ + 1)!(γ − n)!
Y γ−n =

∞∑
k=0

2n(n+ k)!

(2n+ 2k + 1)!

Y k

k!
=ηn(Y ), (22)

where we have set k = γ − n.
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Theorem 2. (Integral representation)

Eta functions of order n can be represented by the integral Eq. (23) as

ηn(Y ) =
2−(n+1)√π

2πi

∫ 0+

−∞
t−(n+ 3

2
)et+

Y
4tdt. (23)
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Proof: We have∫ 0+

−∞ t
−(n+ 3

2
)et × e

Y
4tdt =

∫ 0+

−∞ t
−(n+ 3

2
)et

∞∑
k=0

( Y4t)
k

k! dt

=
∫ 0+

−∞ t
−(n+ 3

2
)et

∞∑
k=0

(4t)−k Y
k

k! dt =
∞∑
k=0

(Y4 )
k

k!

∫ 0+

−∞ t
−(k+n+ 3

2
)etdt,

(24)
we also recall the Hankel’s representation conforming to Eq. (25),∫ 0+

−∞
t−(k+n+ 3

2
)etdt =

2πi

Γ(k + n+ 3
2)
, (25)
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substituting Eq. (25) into (24) leads to∫ 0+

−∞
t−(n+ 3

2
)et × e

Y
4tdt =

∞∑
k=0

2πi

Γ(k + n+ 3
2)

(
Y
4

)k
k!

, (26)

consequently, from Eqs. (15) and (26), we obtain

2−(n+1)√π
2πi

∫ 0+

−∞
t−(n+ 3

2
)et+

Y
4tdt =2−(n+1)√π

∞∑
k=0

1

Γ(k + n+ 3
2)
.

(
Y
4

)k
k!

= ηn(Y ).

(27)

Salameh Sedaghat (Buein Zahra Technical University)Analytical Properties and Applications of Orthogonal Polynomials and Special FunctionsApril 11, 2023 18 / 116



Theorem 3. (Laplace transform)

The Laplace transform of Eta functions is expressed following Eq. (28)

L{ηn(Y ); s} =
2−(n+1)√π

s
E1,n+ 3

2

(
1

4s

)
. (28)
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Proof: Using Eq. (15) we have

L{ηn(Y ); s} =
∫∞

0 e−sY ηn(Y )dY =
∫∞

0 e−sY 2−(n+1)√π
∞∑
k=0

(Y
4

)k

k!Γ(k+n+ 3
2

)
dY

= 2−(n+1)√π
∞∑
k=0

1
4kk!Γ(k+n+ 3

2
)

∫∞
0 e−sY Y kdY

= 2−(n+1)√π
s

∞∑
k=0

( 1
4s)

k

Γ(k+n+ 3
2

)
= 2−(n+1)√π

s E1,n+ 3
2

(
1
4s

)
,

(29)
where

Eα,β(Y ) =

∞∑
k=0

Y k

Γ(αk + β)
, α > 0, β ∈ C, (30)

is the generalized Mittag-Leffler function
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Lemma

The product of two Eta-based functions ηn(Y )ηm(Y ) can be obtained
as reported by

ηn(Y )ηm(Y ) =

π2−n−m−2

Γ(n+ 3
2

)Γ(m+ 3
2

) 2F3(2+n+m
2 , 3+n+m

2 ; 3
2 +m, 3

2 + n, 2 + n+m;x)
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Theorem 4.

The Eta functions satisfy the following relations: (28)

ηn(Z) = ηn(0) + Z Dn(Z), n = −1, 0, 1, 2, 3, ...., (31)

where

Dn(Z) = ηn(0)

[
1

2
η2

0(
Z

4
)−

n+1∑
i=0

(2i− 3)!!ηi(Z)

]
. (32)
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Proof: At first observe that, from definition

ηn(Z) =
ηn−2(Z)− (2n− 1)ηn−1(Z)

Z
, n = 0, 1, 2, ....,

we have

ηn(Z) =
[ηn−1(Z)− Zηn+1(Z)]

2n+ 1
, n = 1, 2, 3, ...., (33)

and proceed by induction on n.

η0(Z) =

{
1

2Z (e
√
Z − e−

√
Z) Z 6= 0,

1 Z = 0,

η0(Z4 ) = 1√
Z

(e
√
Z
2 − e−

√
Z
2 ) ⇒ Z η2

0
(Z4 ) = (eZ + e−Z − 2) = 1

2η−1(Z)− 1,

so we have

η−1(Z) = 1 + 2Z η2
0
(
Z

4
) = η−1(0) +D−1(Z),
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Let us suppose n ≥ 0 and let Eq. (31) and Eq. (32) be valid for n− 1,
i.e.

ηn−1(Z) = ηn−1(0) + Z Dn−1(Z), (34)

Dn−1(Z) = ηn−1(0)

[
1

2
η2

0(
Z

4
)−

n∑
i=0

(2i− 3)!!ηi(Z)

]
. (35)

By substituting Eq. (34) in Eq. (33), and by using ηn(0) = 1
(2n+1)!! ,

which shows that ηn(0) = ηn−1(0)/(2n+ 1), we have

ηn(Z) =
ηn−1(0) + Z (Dn−1(Z)− ηn+1(Z))

2n+ 1
= ηn(0)+Z

Dn−1(Z)− ηn+1(Z)

2n+ 1
.

From Eq. (35) we have

Dn−1(Z)−ηn+1(Z)
2n+1

=
ηn−1(0)

[
1
2
η20(Z

4
)−

n+1∑
i=0

(2i−3)!!ηi(Z)−(2n−1)!! ηn+1(Z)

]
2n+1 = Dn(Z).
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Theorem 5.

For n = −1, 0, 1, ... we have

[Znηs(aZ)](m) =
1

2m

J∑
j=0

2j
(
m
j

)
n!

(n− j)!
Zn−jam−jηm−j+s(aZ),

(36)
where J = minm, n.

Proof : On using the Leibniz formula for the product f(Z)g(Z)

[f(Z).g(Z)](m) =

m∑
j=0

(
m
j

)
f (j)(Z).g(m−j)(Z),

for f(Z) = Zn and g(Z) = ηs(aZ) and the relations

[Zn](j) =

{
n!

(n−j)!Z
n−j j ≤ n

0 j > n
and [ηs(aZ)](i) =

1

2i
aiηi+s(aZ),

the stated relation results directly
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Eta-based functions

Eta-based functions, denoted by ϕn(t) are defined according to Eq.
(37) as

ϕn(t) = tn−1ηbn
2
c−1(Y (t)), n = 1, 2, · · · (37)

where Y (t) = −ξ2t2 in the trigonometric case and Y (t) = ξ2t2 in the
hyperbolic case. These functions have the following properties

ϕn+1(t) = tϕn(t), for even number n ≥ 2. (38)

ϕn+2(t) =
tϕn−1(t)− (n− 1)ϕn(t)

∓ξ2
, for even number n ≥ 2, ξ 6= 0,

(39)
where the upper/lower sign is for oscillatory/hyperbolic case. An
essential property of the Eta-based functions is that they tend to the
classical power function (or polynomial) when ξ = 0
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Theorem

The Eta-based functions ϕn(t) can be defined by the Bessel functions
as stated in Eq. (40)

ϕn(t) =


√

π
2 ξ

1
2
−bn

2
ctn−b

n
2
c− 1

2Jbn
2
c− 1

2
(ξt), Y = −ξ2t2,

√
π
2 ξ

1
2
−bn

2
ctn−b

n
2
c− 1

2 Ibn
2
c− 1

2
(ξt), Y = ξ2t2.

(40)

Proof: From the series expansion of Eta functions, the definition of
Eta-Based function and using the Legendre duplication formula (??),
we have
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Theorem

For ξ 6= 0, the product of two Eta-based functions ϕn(t)ϕm(t) can be
obtained as reported by Eq. (41)

ϕn(t)ϕm(t) = π2
−
(
bn

2
c+bm

2
c
)
tn+m−2

∞∑
k=0

(
2k + bn

2
c + bm

2
c − 1

k

)
Γ(k+bn

2
c− 1

2
)Γ(k+bm

2
c− 1

2
)

(
∓ξ2t2

4

)k

= π2
−
(⌊
n
2

⌋
+
⌊
m
2

⌋)
tn+m−2 2F3

(
1
2
bn

2
c+ 1

2
bm

2
c, 1

2
+ 1

2
bn

2
c+ 1

2
bm

2
c; 1

2
+bm

2
c, 1

2
+bn

2
c,bn

2
c+bm

2
c;∓ξ2t2

)
Γ(bn

2
c+ 1

2
)Γ(bm

2
c+ 1

2
)

.

(41)
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Best approximation and operational matrices:
Suppose f(t) ∈ L2[0, 1] and

fHN (t) = HTA = a1h1(t) + a2h2(t) + · · ·+ aNhN (t), (42)

is the best approximation to f out of H where

H(t) = [h1(t), h2(t), . . . , hN (t)]T , A = [a1, a2, . . . , aN ]T , (43)

are the base functions and coefficients vector. We have two next
theorems if we choose the Eta-based functions as basis functions in Eq.
(42).
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Theorem (Operational matrix of derivative)

The derivative of the H(t) = [ϕ1(t), ϕ2(t), . . . , ϕN (t)]T where ϕi(t)
defined in Eq. (37) satisfies the following relation

H ′(t) = D(t)H(t), (44)

where D(t) = [dij ]N×N is the operational matrix of derivative.

D(t) =


D1(t) If N is even,

D2(t) If N is odd,
(45)
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D1 =



0 ∓ξ2
1 0 0
t 1 0 0

0 1 0 0
t 1 0 0

. .
.

. .
.

. .
.

. .
.

t 1 0 0
0 1 0


, D2 =



0 ∓ξ2
1 0 0
t 1 0 0

0 1 0 0
t 1 0 0

. .
.

. .
.

. .
.

. .
.

0 1 0 0
t 1 0


.
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For ξ = 0 we have:

D(t) =


D3 If N is even,

D4 If N is odd,
(46)

where

D3 =



0 0
1 0 0

2 0 0
1 0 0

4 0 0

.
.
.

.
.
.

.
.
.

1 0 0
N − 2 0 0

1 0


, D4 =



0 0
1 0 0

2 0 0
1 0 0

4 0 0

.
.
.

.
.
.

.
.
.

N − 3 0 0
1 0 0

N − 1 0


.
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Theorem (Dual operational matrix)

The dual operational matrix of the H(t) = [ϕ1(t), ϕ2(t), . . . , ϕN (t)]T

can be obtained according to Eq. (47) as∫ 1

0
H(t)HT (t)dt = QH , (47)

where QH is the N ×N dual operational matrix and

QH =


φ(1, 1) φ(1, 2) · · · φ(1, N)
φ(2, 1) φ(2, 2) · · · φ(2, N)

...
...

. . .
...

φ(N, 1) φ(N, 2) · · · φ(N,N)

 , (48)

in which
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φ(n,m) =


π2
−
(⌊
n
2

⌋
+
⌊
m
2

⌋)
Γ(
⌊
n
2

⌋
+ 1

2
)Γ(

⌊
m
2

⌋
+ 1

2
)

∞∑
k=0

(∓ξ2)
k

( 1
2

⌊
n
2

⌋
+ 1

2

⌊
m
2

⌋
)
k

( 1
2

+ 1
2

⌊
n
2

⌋
+ 1

2

⌊
m
2

⌋
)
k

(n+m−1
2

)
k

(n+m−1)k!( 1
2

+
⌊
m
2

⌋
)
k

( 1
2

+
⌊
n
2

⌋
)
k

(
⌊
n
2

⌋
+
⌊
m
2

⌋
)
k

(n+m+1
2

)
k

If ξ 6= 0,

1

(n+m−1)!(2
⌊
m
2

⌋
−1)!!(2

⌊
n
2

⌋
−1)!!

If ξ = 0.

(49)
Proof: Since

∫ 1

0
H(t)H

T
(t)dt =



∫ 1
0 ϕ1(t)ϕ1(t)dt

∫ 1
0 ϕ1(t)ϕ2(t)dt · · ·

∫ 1
0 ϕ1(t)ϕN (t)dt∫ 1

0 ϕ2(t)ϕ1(t)dt
∫ 1
0 ϕ2(t)ϕ2(t)dt · · ·

∫ 1
0 ϕ2(t)ϕN (t)dt

.

.

.

.

.

.
. .
.

.

.

.∫ 1
0 ϕN (t)ϕ1(t)dt

∫ 1
0 ϕN (t)ϕ2(t)dt · · ·

∫ 1
0 ϕN (t)ϕN (t)dt


,

Salameh Sedaghat (Buein Zahra Technical University)Analytical Properties and Applications of Orthogonal Polynomials and Special FunctionsApril 11, 2023 34 / 116



we have

φ(i, j) =

∫ 1

0
ϕi(t)ϕj(t)dt, (50)

by integrating of the product of two Eta-based functions given in Eq.
(41) on [0, 1], the result is obtained directly for ξ 6= 0. For ξ = 0, the
result can be obtained by using Eqs. (14) and (37).
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State-dependent and time-dependent neutral delay equation

In this section, we use the Eta-based function to develop the new
numerical method for the state-dependent and time-dependent neutral
delay equation as stated in Eq. (51)

x′(t) = g(t, x(t), x(t−Θ1(t, x(t))), x′(t−Θ2(t, x(t)))),

x(0) = x0, 0 ≤ t ≤ 1.
(51)

In Eq. (51),
x(t) = [x1(t), x2(t), · · · , xρ(t)]T ∈ Rρ, (52)

is a real-valued ρ-vector function and

g(t) = [g1(t), g2(t), · · · , gρ(t)]T , (53)

is assumed to be a sufficiently smooth real-valued ρ-vector function.
Also, Θ1, Θ2 are assumed to be continuous functions for all t ∈ [0, 1].
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Numerical method

This section is devoted to presenting a new numerical method for
solving the problem given in Eq. (51). Using Eq. (42) the best
approximation of xi(t), i = 1, 2, · · · , ρ is

xi(t) = HT (t)Ai, (54)

and
x(t) = Ĥ(t)Â, (55)

where Â is a ρN × 1 vector given by

Â = [A1, A2, ..., Aρ]
T , (56)

and
Ĥ(t) = Iρ ⊗HT (t), (57)

in which Iρ is the ρ dimensional identity matrix, Ĥ(t) is ρ× ρN matrix
as well, and ⊗ denotes Kronecker product. Using Eq. (54) and
Theorem 2.6, we have
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x′i(t) = HT (t)DT (t)Ai. (58)

Using Eqs. (52) and (54) we get

x′(t) = Ĥ(t)D̂(t)Â, (59)

where D̂(t) is ρN × ρN matrix as

D̂(t) = Iρ ⊗DT (t).

Substituting Eqs. (55) and (59) into (51), we have

Ĥ(t)D̂(t)Â =

g(t, Ĥ(t)Â, Ĥ(t−Θ1(t, Ĥ(t)Â))Â, Ĥ(t−Θ2(t, Ĥ(t)Â))D̂(t−Θ2(t, Ĥ(t)Â))Â).
(60)

Next we collocate Eq. (60) at the Chebyshev nodes in [0, 1]

tj =
1

2
cos

π(2j + 1)

2(N + 1)
+

1

2
, j = 0, 1, ..., N − 1, (61)
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to obtain a system of ρN nonlinear equations as

W = Ĥ(tj)D̂(tj)Â− g(tj , Ĥ(tj)Â, Ĥ(tj −Θ1(tj , Ĥ(tj)Â))Â, Ĥ(tj

−Θ2(tj , Ĥ(tj)Â))D̂(tj −Θ2(tj , Ĥ(tj)Â))Â) = 0.
(62)

Similar to Eq. (55), corresponding matrix form for the initial condition
x(0) = x0 is according to Eq. (63)

V = Ĥ(0)Â− x0 = 0. (63)

Replacing V instead of the ρ last row of W , we have a set of ρN
nonlinear equations which can be solved for the elements of Â using
the well Newton’s iterative method. Finally, we calculate x(t) given in
Eq. (55).
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Error estimate

This section aims to estimate the error norm for the numerical method.
For ease of exposition but without any loss of generality, we describe
convergence analysis for ρ = 1 and x1 = x. At first, we suppose that
Hµ(0, 1) with µ ≥ 0 is a Sobolev space equipped with the norm

‖ x ‖Hµ(0,1)=

 µ∑
j=0

∫ 1

0
|x(j)(t)|2w(t)dt

 1
2

=

 µ∑
j=0

‖ x(j) ‖2L2(0,1)

 1
2

.

(64)
To continue the error discussion, the following Theorem is recalled.
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Theorem

Assume that x be a member of Sobolev space Hµ(0, 1) with µ ≥ 0, and
Pn(2t− 1) be the well-known shifted Legendre polynomials defined on

the interval [0, 1]. Let
N∑
n=0

anPn(2t− 1) ∈ ΠN , denotes the best

approximation of x using the set of shifted Legendre polynomials,
where ΠN is the space of all polynomials of degree less than or equal to
N . Then we have∥∥∥∥∥x−

N∑
n=0

anPn(2t− 1)

∥∥∥∥∥
L2(0,1)

≤ cN−µ|x|Hµ;N (0,1) , (65)

where c is a constant positive independent of N and x and

|x|Hµ;N (0,1) =

 µ∑
i=min{µ,N+1}

∥∥∥x(i)
∥∥∥2

2

 1
2

. (66)
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Theorem

Suppose that x be a member of Sobolev space Hµ(0, 1) with µ ≥ 0, and
ϕn be the Eta-based functions defined on the interval [0, 1]. Assume

that xN (t) =
N∑
n=1

anϕn(t) denotes the approximation of x using the set

of Eta-based functions. Then we have∥∥∥∥∥x−
N∑
n=1

anϕn(t)

∥∥∥∥∥
L2(0,1)

≤ cN−µ|x|Hµ;N (0,1) +

N∑
n=1

√
π2−b

n
2
cε|an|. (67)
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Theorem

Let x ∈ Hµ(0, 1) be the exact solution of Eq. (51) and

x̄N = HT Ā =
N∑
n=1

ānϕn(t) be the approximate solution of this equation

obtained by the proposed method. Then, we have

‖x− x̄N‖L2(0,1) ≤ cN−µ|x|Hµ;N (0,1) +
N∑
n=1

√
π2−b

n
2
cε|an|

+
∥∥A− Ā∥∥

2

(
N∑
n=1

π2−2[n2 ]

(−1+2n){Γ(bn
2
c+ 1

2
)}2 2F3

(
n− 1

2 , b
n
2 c;n+ 1

2 , 2b
n
2 c, b

n
2 c+ 1

2 ;∓ξ2
)) 1

2

.

(68)
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Numerical example

In this section, we assess the new numerical method to derive the
numerical solution of Eq.(51) for different cases. We consider different
formats of the delay term, including a pantograph delay where the
delay term is represented as x(qt), and a time-dependent delay where
the delay term is expressed as x(τ(t)), and a state-dependent delay
where a delay term is introduced as x(t−Θ(t, x(t))). In each example,
we present the absolute error for each case to compare the results.

Case 1: We choose Eta-based functions as a base. In this case

H(t) = [ϕ1(t), ϕ2(t), . . . , ϕN (t)]T (69)

is defined on t ∈ [0, 1] where ϕi(t) has been introduced in Eq. (37).
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Case 2: We choose Legendre polynomials as a base. Legendre
polynomials, Pn(t), is defined on the interval (−1, 1) using the
following recursive formula

Pn(t) = 2Pn−1(t)− Pn−2(t), n = 2, 3, ..., (70)

where P0(t) = 1 and P1(t) = t. These polynomials are orthogonal
with respect to the weight w(t) = 1 on the interval [−1, 1]. In this
case

H(t) = [P0(2t− 1), P1(2t− 1), . . . , PN−1(2t− 1)]T (71)

is defined for t ∈ [0, 1].
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Case 3: We choose H(t) = [ψ0(t), ψ1(t), . . . , ψN−1(t)]T as a base
where

ψi(t) =

{
cos(i× t), if i is even
sin(i× t), if i is odd

and t ∈ [0, 1]. In some specific cases we could consider only
sin(i× t) or cos(i× t) as the base.
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Example 1. Pantograph delay differential equation

In this example, we consider Eq. (51) where ρ = 1 and

g(t) = x( t2) + et(t+1)
2 + e−t(t−1)

2 − t
2 sinh t

2 . In this case, we have a delay
differential equation of pantograph type with an exact solution
x(t) = tsinh(t). In this case, for reaching the absolute error of order
O(10−16), the CPU time taken in Legendre polynomials was almost 42
times greater than that in Eta-based functions, and this accuracy was
not achieved when we used trigonometric functions. The absolute error
is presented in Table 1. In this table, we choose four first terms of the
base for all three different choices of base functions.
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Table: Absolute error for example 1.

t Eta-based Legendre Trigonometric
N=4 N=4 N=4

0.2 3.60× 10−16 2.05× 10−2 5.05× 10−2

0.4 5.27× 10−16 2.50× 10−2 6.16× 10−2

0.6 6.10× 10−16 2.67× 10−2 6.47× 10−2

0.8 6.66× 10−16 3.17× 10−2 7.71× 10−2
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Example 2. Multi pantograph delay differential equation

In this example, we consider the multi-pantograph delay differential
equation. We assume, in Eq. (51), ρ = 1 and

g(t) = −x(t)− e−
t
2 sin( t2)x( t2)− 2e−

3t
4 cos( t2) sin( t4)x( t4). The exact

solution is x(t) = e−tcos(t). The absolute error is presented in Table 4.
Also, CPU time used (in seconds) for different values of N is given in
Table 2.
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Table: Absolute error for example 2.

t Eta-based functions Trigonometric functions

N = 3 N = 7 N = 11 N = 3 N = 7 N = 11

0.2 1.2× 10−2 1.2× 10−5 1.6× 10−10 5.2× 10−3 6.9× 10−4 4.2× 10−5

0.4 1.5× 10−2 9.5× 10−6 1.2× 10−10 7.5× 10−3 5.3× 10−4 3.0× 10−5

0.6 1.4× 10−2 7.1× 10−6 9.1× 10−11 5.8× 10−3 4.0× 10−4 2.2× 10−5

0.8 1.0× 10−2 4.9× 10−6 6.3× 10−11 2.3× 10−3 2.6× 10−4 1.6× 10−6

Table: CPU time used corresponding to Eta-based functions for solving example 2.

Absolute error O(10−2) O(10−3) O(10−5) O(10−10)
CPU time (N = 3) 0.001 (N = 5) 0.016 (N = 7) 0.031 (N = 11) 0.157
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Example 3. Time-dependent neutral delay differential
equation

To examine the effectiveness of the proposed method for
time-dependent neutral delay differential equations, we consider Eq.
(51) with ρ = 1 and g(t) = −x(Θ(t)) + x′(Θ(t)) + cosh(t)− 1

t+1 . Also,
we assume Θ(t) = ln(t+ 1). The exact solution is chosen as
x(t) = sinh(t). Table 3 shows the absolute error for this case. In this
example, reaching the absolute error of order O(10−16), the CPU time
taken in Legendre polynomials was almost 66 times greater than that
in Eta-based functions, and the CPU time taken in trigonometric
functions was nearly 22 times greater than that in Eta-based functions.

Salameh Sedaghat (Buein Zahra Technical University)Analytical Properties and Applications of Orthogonal Polynomials and Special FunctionsApril 11, 2023 51 / 116



Table: Absolute error for example 3.

t Eta-based functions Legendre polynomials Trigonometric functions
N = 3 N = 3 N = 3

0.2 1.3877× 10−16 4.0251× 10−2 3.9415× 10−2

0.4 1.6653× 10−16 4.9112× 10−2 6.3251× 10−2

0.6 2.2204× 10−16 3.4987× 10−2 6.1952× 10−2

0.8 2.2204× 10−16 6.9415× 10−3 3.7040× 10−2
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Integral equation

In this section, we develop a new numerical method based on the Eta
functions for solving the system of Fredholm and Volterra integral
equations

P (t) = G(t)+λ1

∫ t

0
K1(t, s, P (s))ds+λ2

∫ 1

0
K2(t, s, P (s))ds, 0 ≤ t, s ≤ 1,

(72)
where

P (t) = [ρ1(t), ..., ρn(t)]T ,
G(t) = [g1(t), ..., gn(t)]T ,
K1(t, s, P (s)) = [κ1

1(t, s, P (s)), ..., κ1
n(t, s, P (s))]T ,

K2(t, s, P (s)) = [κ2
1(t, s, P (s)), ..., κ2

n(t, s, P (s))]T

and λ1 and λ2 are constant vectors.
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The best approximation of ρi(t) in Eq. (72) is

ρi(t) = HT (t)Di, (73)

and
P (t) = Ĥ(t)D̂, (74)

where D̂ is a nN × 1 vector given by

D̂ = [D1, D2, ..., Dn]T , (75)

and
Ĥ(t) = In ⊗HT (t), (76)

where In is the n dimensional identity matrix. Also, Ĥ(t) is n× nN
matrix and ⊗ shows Kronecker product.
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Replacing Eq. (74) in (72), we have

Ĥ(t)D̂ = G(t) + λ1

∫ t

0
K1(t, s, Ĥ(s)D̂)ds+ λ2

∫ 1

0
K2(t, s, Ĥ(s)D̂)ds,

(77)
Using the Gauss-Legendre numerical integration for evaluating the
integral in Eq. (77), we get

Ĥ(t)D̂ = G(t)+λ1

p∑
i=0

ωiK1(t,
t

2
+
t

2
γi, Ĥ(

t

2
+
t

2
γi)D̂)+λ2

p∑
i=0

ωiK2(t,
1

2
+

1

2
γi, Ĥ(

1

2
+

1

2
γi)D̂), 0 ≤ t ≤ 1,

(78)
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where ωi and γi are weights and nods of Gauss-Legendre. Using Eq.
(78), we introduce the residual of the problem as

R(t, D̂) = Ĥ(t)D̂ −G(t)− λ1

p∑
i=0

ωiK1(t, t2 + t
2γi, Ĥ( t2 + t

2γi)D̂)

−λ2

p∑
i=0

ωiK2(t, 1
2 + 1

2γi, Ĥ(1
2 + 1

2γi)D̂),

and collocate this equation at the extreme points of the Chebyshev
polynomial to get nN nonlinear equations which can be solved for the
elements of D̂. We use Newton’s iterative method to solve the
nonlinear equations for the elements of D̂. Finally, we calculate P (t)
given in Eq. (74).
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Example 4:

In this example, we assume n = 1, K2(t, s, ρ(s)) = k(t, s)eρ(s) where
k(t, s) = ts and the exact solution is ρ(t) = cos(t). The absolute error
is presented in Table 4. In this table, we choose four first terms of the
base for all three different choices of base functions.

Table: Absolute error (Example 4)

t Eta-based functions Legendre polynomials Trigonometric

0.2 3.8× 10−11 1.1× 10−4 3.5× 10−11

0.4 7.5× 10−11 8.6× 10−5 7.9× 10−11

0.6 1.1× 10−10 1.1× 10−4 1.1× 10−10

0.8 1.5× 10−10 1.2× 10−5 1.5× 10−10
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Example 5: In this example, we assume
n = 1, K2(t, s, ρ(s)) = k(t, s)ρ2(s) where k(t, s) = ts and the exact
solution is ρ(t) = tsinh(t). The absolute error is presented in Table 5.
In this table, we choose four first terms of the base for all three
different choices of base functions.

Table: Absolute error (Example 5)

t Eta-based functions Legendre polynomials Trigonometric

0.2 1.4× 10−11 5.6× 10−4 2.4× 10−5

0.4 2.9× 10−11 4.7× 10−4 7.2× 10−5

0.6 4.4× 10−11 6.4× 10−4 1.1× 10−4

0.8 5.9× 10−11 1.2× 10−4 3.8× 10−5
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Orthogonal polynomials and polynomial approximations

Orthogonal polynomials play the most important role in spectral
methods and, therefore, it is necessary to highlight their relevant
properties. This section is devoted to the study of the properties of
general orthogonal polynomials. We briefly review the fundamental
results on the polynomial approximations.
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The family of orthogonal polynomials constitutes a basis of the Hilbert
space L2([a, b], w(x)), with the standard inner product given by

(f, g) =

∫ b

a
f(x)g(x)w(x)dx.

These orthogonal polynomials satisfy many important properties,
among which we highlight the following:

• The polynomial pn(x) is of degree exactly equal to n for all n ≥ 0.

• The zeros of pn(x) are simple and they are located in the interval
(a, b).
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• The following orthogonality property is satisfied:∫ b

a
pn(x)pm(x)w(x)dx = cnδnm, m, n = 0, 1, 2, ..., N

or equivalently∫ b

a
xmpn(x)w(x)dx = 0, for n = 1, 2, ...; m < n.

The interval (a, b) is called the interval of orthogonality and need not
be finite.
The weight function w(x) ≥ 0 for all x ∈ [a, b] and w(x) > 0 for all
x ∈ (a, b).
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• A sequence of orthogonal polynomials pn(x) satisfies a 3-term
recurrence relation of the form.

xpn(x) = pn+1(x) + anpn(x) + bnpn−1(x),

where we set p−1(x) = 0 and p0(x) = 1 and coefficients an and bn that
can be written in terms of the inner product

an =
(xpn, pn)

(pn, pn)
, n ≥ 0, bn =

(pn, pn)

(pn−1, pn−1)
, n ≥ 1.
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• The derivatives of orthogonal polynomials also form orthogonal
polynomial sets.

• Ortoghonal polynomials satisfy a second order linear differential
equation of the Sturm-Liouville type

p(x)yn
′′(x) + q(x)yn

′(x) + λnyn(x) = 0

where p(x) is a polynomial of degree ≤ 2, q(x) is a linear polynomial,
both independant of n, and λn is independant of x. Equivalently, the
weights satisfy a first-order differential equation, the Pearson equation

d

dx
[p(x)w(x)] = q(x)w(x),
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• The Rodrigues’ type formula of orthogonal polynomials is defined as:

yn(x) =
1

anw(x)
Dn [w(x)pn(x)] , n = 0, 1, 2, ....

where p(x) is a polynomial in x independent of n and an does not
depend on x.

The Rodrigues formula provides transparent and immediate
information about the interval of orthogonality, the weight function,
and the range of parameters for which orthogonality holds.
From the application point of view, the most important class is the
so-called classical orthogonal polynomials, that include the well-known
families: Hermite, Laguerre and Jacobi.
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The polynomials orthogonal with respect to the normal distribution
e−x

2
are the Hermite polynomials, named for the French

mathematician Charles Hermite (1822 - 1901).

Definition: Hermite polynomials

The Hermite polynomials can be represented explicitly by

Hn(x) =

bn2 c∑
r=0

(−1)rn!

r!(n− 2r)!
(2x)n−2r.

Theorem

The Hermite polynomials are denoted Hn(x) and are defined by the
generating function

e2xt−t2 =

∞∑
n=0

Hn(x)tn

n!

valid for all finite x and t.
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Theorem

The orthogonality property of Hn(x) is∫ ∞
−∞

Hn(x)Hm(x)e−x
2
dx = 2nn!

√
πδnm,

i.e. the Hermite polynomials are orthogonal on the real line with
respect to the normal distribution.

Theorem

The three-term recurrence relation for the Hermite polynomials is
given by

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1.

The Rodrigues formula for Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
.
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Laguerre polynomials, named for the French mathematician Edmond
Nicolas Laguerre (1834 - 1886).

Definition

The Laguerre polynomials can be represented explicitly by

Ln(x) =

n∑
r=0

(−1)rn!xr

(n− r)!(r!)2 .

Theorem

Laguerre polynomials are denoted Lαn(x) and are defined by the
generating function

e
−xt
1−t

1− t
=

∞∑
n=0

Ln(x)tn
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Theorem

The Laguerre polynomials are orthogonal on the positive real line with
respect to the gamma distribution, the orthogonality relation for the
Laguerre polynomials is contained in∫ ∞

0
Ln(x)Lm(x) e−xdx = δnm,

Theorem

The Laguerre polynomials satisfy the three term recurrence relation
given by

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x),

The Rodrigues formula for Laguerre polynomials

Ln(x) =
ex

n!

dn

dxn
(xne−x).
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Definition

The Jacobi polynomials are defined via the hypergeometric function as
follows

Pα,βn (x) =
(α+ 1)n

n!
2F1(−n, n+ α+ β + 1;α+ 1;

1− x
2

),

where (a)n is Pochhammer’s symbol(a)n = a(a+ 1)...(a+ n− 1)

Theorem

The Jacobi polynomials can be represented explicitly by

Pα,βn (x) =
Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑
r=0

(
n
r

)
Γ(α+ β + n+ r + 1)

Γ(α+ r + 1

(
1− x

2

)r
.
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Definition

For real x the Jacobi polynomial can alternatively be written as

Pα,βn (x) =
n∑
r=0

(
n+ α
n− r

)(
n+ β
r

)(
x− 1

2

)r(
x− 1

2

)n−r
.

and for integer n (
n
r

)
=

{
Γ(n+1)

Γ(n+1)Γ(n−r+1) r ≥ 0,

0 r < 0.
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Theorem

The Jacobi polynomials satisfy the orthogonality condition∫ 1
−1 (1− x)α(1 + x)βPα,βn (x)Pα,βm (x)dx

= 2α+β+1

α+β+2n+1
Γ(α+n+1)Γ(β+n+1)
n!Γ(α+β+n+1) δnm, α, β > −1.
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Definition

The Legendre polynomials are Jacobi polynomials with α = β = 0:

Pn(x) = P 0,0
n (x) = 2F1(−n, n+ 1; 1;

1− x
2

)

The Legendre polynomials satisfy the three term recurrence relation
given by

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x),
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Theorem

Legendre polynomials are the suitably normalized regular solution of
differential equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0

Theorem

The orthogonality property of Pn(x) is∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δnm,

Salameh Sedaghat (Buein Zahra Technical University)Analytical Properties and Applications of Orthogonal Polynomials and Special FunctionsApril 11, 2023 73 / 116



Definition

The Chebyshev polynomials of the first kind can be obtained from the
Jacobi polynomials by taking α = β = −1

2

Tn(x) =
P
−1
2
,−1

2
n (x)

P
−1
2
,−1

2
n (0)

= 2F1(−n, n+ 1;
1

2
;
1− x

2
).

Theorem

The orthogonality property of Tn(x) is∫ 1

−1
(1− x2)Tn(x)Tm(x) dx =

{
π
2 δnm n 6= 0
πδnm n = 0

,
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Theorem

The Chebyshev polynomials satisfy the three term recurrence relation
given by

2xTn(x) = Tn+1(x) + Tn−1(x), T0(x) = 1, T1(x) = x.

Theorem

Chebyshev polynomials is the suitably normalized regular solution of
differential equation

(1− x2)y′′(x)− xy′(x) + n2y(x) = 0
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Definition

Bessel functions, first defined by the mathematician Bernoulli and then
generalized by Bessel, are canonical solutions of Bessel’s differential
equation

x2y′′ + xy′ + (x2 − n2)y = 0,

for an arbitrary complex number α , the order of the Bessel function.

Theorem

Bessel functions of the first kind of order n denote by Jn(x) and can be
represented explicitly by

Jn(x) =

n∑
r=0

(−1)r

Γ(n+ r + 1)(r!)
(
x

2
)
2r+n

.
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Theorem

Bessel functions of the first kind are defined by the generating function

e
1
2
x(t− 1

t
) =

∞∑
n=−∞

Jn(x)tn.

Theorem

Orthogonality relation for the first kind Bessel functions is∫ 1

0
xJn(ξix)Jn(ξix) dx =

1

2
{Jn+1(ξi)}2δij ,

if ξi and ξj are roots of equation Jn(x).
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The fractional derivative and integral

Definition 1. Caputo’s fractional derivative of order α is defined as

(Dαx)(t) =
1

Γ(n− α)

∫ t

0

x(n)(s)

(t− s)α+1−nds, n− 1 < α ≤ n, n ∈ N,

(79)
where α > 0 is the order of the derivative and n is the smallest integer
greater than α.
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The fractional derivative and integral

Definition 2. The Riemann-Liouville fractional integral operator of
order α is defined as

Iαx(t) =

{
1

Γ(α)

∫ t
0

x(s)
(t−s)1−αds, α > 0,

x(t), α = 0.
(80)
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The fractional derivative and integral

For the Riemann-Liouville fractional integral, we have

Iαxν =
Γ(ν + 1)

Γ(ν + 1 + α)
xν+α, ν > −1. (81)

The Caputo derivative and Riemann-Liouville integral satisfy the
following property

Iα(Dαx(t)) = x(t)−
n−1∑
k=0

x(k)(0)
tk

k!
. (82)
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The fractional derivative and integral

Definition 3. The left–sided and right–sided Riemann-Liouville
integrals of order µ, when 0 < µ < 1, are defined, respectively, as

(RLxL I
µ
x f)(x) =

1

Γ(µ)

∫ x

xL

f(s)ds

(x− s)1−µ , x > xL,

and

(RLx IµxRf)(x) =
1

Γ(µ)

∫ xR

x

f(s)ds

(s− x)1−µ , x < xR,

where Γ represents the Euler gamma function.
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The fractional derivative and integral

Definition 4. The corresponding inverse operators, the left-sided
and right-sided fractional derivatives of order µ, when 0 < µ < 1,
are defined as

(RLxLD
µ
xf)(x) =

d

dx
(RLxL I

1−µ
x f)(x) =

1

Γ(1− µ)

d

dx

∫ x

xL

f(s)ds

(x− s)µ
, x > xL,

and

(RLx Dµ
xR
f)(x) =

−d
dx

(RLx I1−µ
xR

f)(x) =
1

Γ(1− µ)

−d
dx

∫ xR

x

f(s)ds

(x− s)µ
,
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The fractional derivative and integral

Definition 3. The corresponding left- and right-sided Caputo
derivatives of order µ, when 0 < µ < 1, are obtained as

(CxLD
µ
xf)(x) = (RLxL I

1−µ
x

df

dx
)(x) =

1

Γ(1− µ)

∫ x

xL

f ′(s)ds

(x− s)µ
, x > xL,

and

(CxD
µ
xR
f)(x) = (RLx I1−µ

xR

−df
dx

)(x) =
1

Γ(1− µ)

∫ xR

x

−f ′(s)ds
(x− s)µ

, x < xR.
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properties

The left- and right-sided fractional derivatives of both Riemann-
Liouville and Caputo type satisfy the following properties :

(RLxL D
µ
xf)(x)− (CxLD

µ
xf)(x) =

f(xL)

Γ(1− µ)(x− xL)µ
.

and

(RLx Dµ
xR
f)(x)− (CxD

µ
xR
f)(x) =

f(xR)

Γ(1− µ)(xR − x)µ
.
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properties

Finally, we recall a useful property of the Riemann-Liouville
fractional derivatives. Assume that 0 < µ < 1 and 0 < λ < 1 and
f(xL) = 0, x > xL, then

RL
xL
Dµ+λ
x f(x) = (RLxLD

µ
x)(RLxLD

λ
x)f(x) = (RLxLD

λ
x)(RLxLD

µ
x)f(x).
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Function approximation

Suppose f(x) is a continuous function which can be expanded in
orthogonal polynomials φj(x):

f(x) =
∞∑
j=0

cjφj(x), a ≤ x ≤ b.

where the coefficients cj are given by

cj =
1

hj

∫ b

a

w(x)f(x)φj(x)dx, j = 0, 1, 2, ....

and

hj =

∫ b

a

w(x){φj(x)}2dx, j = 0, 1, 2, ....
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Function approximation

In practice, only the first (N + 1)-terms orthogonal polynomials
are considered. Hence, f(x) can be expressed in the form

f(x) '
N∑
j=0

cjφj(x),= CTφ(x), a ≤ x ≤ b.

where the coefficient vector C and the vector φ(x) are given by

CT = [c0, c1, ..., cN ],

φ(x) = [φ0(x), φ1(x), ..., φN(x)]
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Theorem

Let φ(x) be shifted Legendre vector on [0, 1] and also suppose α > 0
then

Dνφ(x) ' D(ν)φ(x),

where D(ν) is the (N + 1)× (N + 1) operational matrix of derivatives
of order ν in the Caputo sense and is defined as follows:
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D(ν) =



0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0

dνe∑
k=dνe

θdνe,0,k
dνe∑

k=dνe
θdνe,1,k

dνe∑
k=dνe

θdνe,2,k . . .
dνe∑

k=dνe
θdνe,N,k

...
...

... . . .
...

i∑
k=dνe

θi,0,k
i∑

k=dνe
θi,1,k

i∑
k=dνe

θi,2,k . . .
i∑

k=dνe
θi,N,k

...
...

... . . .
...

N∑
k=dνe

θN,0,k
N∑

k=dνe
θN,1,k

N∑
k=dνe

θN,2,k . . .
N∑

k=dνe
θN,N,k


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where

θi,j,k = (2j + 1)

j∑
`=0

(−1)i+j+k+`(i+ k)!(`+ j)!

(i− k)!k!Γ(k − ν + 1)(j − `)!(`!)2(k + `− ν + 1)

Note that in D(µ), the first dνe rows are all zero.
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Fractional neutral delay differential equation with
state-dependent and time-dependent delay

We consider the fractional neutral delay differential equation with
state-dependent and time-dependent delay:

DαX(t) = F (t,X(t), X(τ(t)−∆1(X(t))), DαX(φ(t)−∆2(X(t)))),
(83)

where X(0) = X0,, 0 < α ≤ 1, 0 ≤ t ≤ tf , and

X(t) = [x1(t), x2(t), · · · , xl(t)]T , F (t) = [f1(t), f2(t), · · · , fl(t)]T ,

are l-vector functions, F (t) assumed to be a sufficiently smooth
real valued vector function, ∆1(t,X(t)), ∆2(t,X(t)), τ(t) and φ(t)
are assumed to be continuous functions for all t ∈ [0, tf ]. We
assume X(t) = 0 for t < 0.
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Numerical method

In this section, we introduce the new numerical method to solve
the fractional neutral delay differential equation in Eq. (83). For
starting the new numerical method discussion, first, we present
the least-squares approximation using Jacobi polynomials. The

class of Jacobi polynomials, P
(γ,β)
m (t), includes all the polynomial

solutions to singular Strum-Lioville problems on (−1, 1). These
polynomials satisfy the relation

P (γ,β)
m (t) =

m∑
k=0

(
m+ γ
k

)(
m+ β
m− k

)
(
t− 1

2
)m−k(

t+ 1

2
)k,

where (
z
n

)
=

{ Γ(z+1)
Γ(n+1)Γ(z−n+1)

, n ≥ 0,

0, n < 0.
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Numerical method

These polynomials are orthogonal with respect to the weight
w(t) = (1− t)α(1 + t)β on the interval [−1, 1]. Suppose x(t) and a
vector of base functions

G(t) = [P
(γ,β)
0 (t), P

(γ,β)
1 (t), . . . , P

(γ,β)
M (t)]T

are defined on t ∈ (−1, 1). For the least squares approximation,
the coefficients c0, c1, . . . , cM of the sum

xGM(t) = c0P
(γ,β)
0 (t) + c1P

(γ,β)
1 (t) + · · ·+ cMP

(γ,β)
M (t), (84)

must be determined in such a way that the integral

IGM =

∫ 1

−1

(x(t)− xGM(t))2dt,

is minimal.
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Numerical method

The function xGM(t) with these coefficients is called the least
squares fit of x(t) with respect to vector G. The piecewise
least-squares approximation is a powerful method to increase the
accuracy of the approximation.
It is easy to show, by using the properties of Jacobi polynomials
and Eq. (81), we could derive the fractional integral of Jacobi
polynomials. For Example, for γ = β = 0, we have

Iα(P (γ,β)
m (t)) = 2m

m∑
k=0

(
m

k

)(
m+k−1

2

m

)
Γ(k + 1)

Γ(k + 1 + α)
tk+α. (85)
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Numerical method

Using Eq. (84), the least squares approximation of Dαxi(t) in Eq.
(83) has a general form

Dαxi(t) = GT (t)Ci, (86)

where

GT (t) = [P
(γ,β)
0 (

2

tf
(t− tf )+1), P

(γ,β)
1 (

2

tf
(t− tf )+1), ..., P

(γ,β)
M (

2

tf
(t− tf )+1)],

Ci = [ci0, c
i
1, ..., c

i
M ]T .

Using Eq. (86) we have
DαX(t) = Ĝ(t)Ĉ, (87)

where Ĉ is a l(M + 1)× 1 vector given by
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Numerical method

Ĉ = [C1, C2, · · · , Cl]T ,
and

Ĝ(t) = Il ⊗GT (t),

in which Il is the l dimensional identity matrix, Ĝ(t) is
l × l(M + 1) matrix as well, and ⊗ denotes Kronecker product.
Using Eqs. (82) and (87) we get

X(t) = Ĝ(t, α)Ĉ +X0, (88)

where Ĝ(t, α) = Il ⊗GT (t, α) and

GT (t, α) =

[IαP
(γ,β)
0 (

2

tf
(t− tf ) + 1), IαP

(γ,β)
1 (

2

tf
(t− tf ) + 1), ..., IαP

(γ,β)
M (

2

tf
(t− tf ) + 1)].
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Numerical method

By replacing Eqs. (87) and (88) in (83), we have

Ĝ(t)Ĉ = F (t, Ĝ(t, α)Ĉ +X0, Ĝ((τ(t)−∆1(Ĝ(t, α)Ĉ +X0)), α)Ĉ+ (89)

X0, Ĝ(φ(t)−∆2(Ĝ(t, α)Ĉ +X0)Ĉ).

We use the collocation method by requiring the residual of the problem i.e.,

R(t, Ĉ) = Ĝ(t)Ĉ − F (t, Ĝ(t, α)Ĉ +X0, Ĝ((τ(t)−∆1(Ĝ(t, α)Ĉ +X0)), α)Ĉ

+X0, Ĝ(φ(t)−∆2(Ĝ(t, α)Ĉ +X0)Ĉ), (90)
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Numerical method

to vanish on the collocation points which leads to a system of
l(M + 1) nonlinear equations which can be solved for the elements

of Ĉ using the well Newton’s iterative method. Finally, we
calculate X(t) given in Eq. (88). We have used three different
collocation points and compare the accuracy of the method by
using each of them.
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Error bounds

In this section, we give some estimates for the error of the Jacobi
approximation of a function x(t) in terms of Sobolev norms.
The Sobolev norm of integer order µ ≥ 0 in the interval (0, tf ), is
given by

‖ x ‖Hµ
w(0,tf )=

(
µ∑
k=0

∫ tf

0

|x(k)(t)|2w(t)dt

) 1
2

=

(
µ∑
k=0

‖ x(k) ‖2
L2
w

) 1
2

,

(91)
where x(k) denotes the k − th derivative of x and Hµ

w(0, tf ) is a
weighted Sobolev space relative to the weight function w.
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Error bounds

We will also assume that the problem is sufficiently smooth and
that there exist Lipschitz constants, L1, L2, L3, Lx, Lxα , L∆1

and L∆2 for which the following inequalities hold.

‖f(t, x2, y2, z2)− f(t, x1, y1, z1)‖L2
w(0,tf ) ≤ L1 ‖x2 − x1‖L2

w(0,tf )

+ L2 ‖y2 − y1‖L2
w(0,tf ) + L3 ‖z2 − z1‖L2

w(0,tf ) ,
(92)

‖x(t2)− x(t1)‖L2
w(0,tf ) ≤ Lx ‖t2 − t1‖L2

w(0,tf ) , (93)
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Error bounds

‖Dαx(t2)−Dαx(t1)‖L2
w(0,tf ) ≤ Lxα ‖t2 − t1‖L2

w(0,tf ) , (94)

‖∆1(x2)−∆1(x1)‖L2
w(0,tf ) ≤ L∆1

‖x2 − x1‖L2
w(0,tf ) , (95)

‖∆2(x2)−∆2(x1)‖L2
w(0,tf ) ≤ L∆2

‖x2 − x1‖L2
w(0,tf ) . (96)

Sufficient conditions for the existence and uniqueness of solutions for Eq. (83)
are: f is continuous with respect to t, x(t), x(τ(t)−∆1(x(t))) and
Dαx(φ(t)−∆2(x(t))), x(t) is continuous, f satisfies Lipschitz conditions (Eq.
(92)), and f is bounded. Also, we shall make use of the assumption that the
Lipschitz constant L3 be less than 1. To state our main results, we recall the
following theorem.
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Error bounds

Theorem 5: Suppose x ∈ Hµ
w(I) with I = (0, tf ) and µ ≥ 0, and

fGM(x) be the least squares approximation of x(t), then∥∥x− xGM∥∥L2
w(I)
≤ cM−µ ∥∥x(µ)

∥∥
L2
w(I)

, (97)

and for 1 ≤ r ≤ µ,∥∥x− xGM∥∥Hr
w(I)
≤ cM2r− 1

2
−µ ∥∥x(µ)

∥∥
L2
w(I)

, (98)

where c depends on µ.
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Error bounds

Remark : Here, we expand Dαx as Jacobi polynomials and from
Eqs. (86) and (97) for M ≥ µ− 1 we have

‖ Dαx− (Dαx)GM ‖L2
w(I)≤ cM−µ ‖ (Dαx)(µ) ‖L2

w(I), (99)

now by using Eq. (82) and inequality (99) we obtain the error
estimate x− xGM for x ∈ Hµ

w(I) as

‖x− xGM‖L2
w(I)

= ‖IαDαx− Iα(Dαx)GM‖L2
w(I) = ‖Iα(Dαx− (Dαx)GM)‖L2

w(I)

≤ c1I
α‖Dαx− (Dαx)GM‖L2

w(I) ≤ CM−µ ‖ (Dαx)(µ) ‖L2
w(I),
(100)
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Error bounds

and for 1 ≤ r ≤ µ,∥∥x− xGM∥∥Hr
w(I)
≤ CM2r− 1

2
−µ ∥∥(Dαx)(µ)

∥∥
L2
w(I)

, (101)

where C depends on µ and α.
Now, we establish sufficient conditions for convergence of the
method that is based on our approach. In order to establish our
convergence results, we assume that the solution is sufficiently
smooth except perhaps for a finite number of points. We also
assume that the function f(t, x(t), y(t), z(t)) is sufficiently smooth
except for the points where x(t), y(t) or z(t) is not smooth.
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Error bounds

Throughout this section, we shall use these inequalities

‖y(τ(t)−∆1(y(t)))− x(τ(t)−∆1(x(t)))‖L2
w(I) ≤

‖y(τ(t)−∆1(y(t)))− x(τ(t)−∆1(y(t)))‖L2
w(I) + LxL∆1

‖y(t)− x(t)‖L2
w(I) ,

(102)
for the delay term associated with Eq. (83) where the functions x and ∆1 are
assumed to satisfy the Lipschitz conditions (Eqs. (93) and (95)). These
inequalities follow by applying the triangle inequality and the Lipschitz
conditions, and

‖Dαy(φ(t)−∆2(y(t)))−Dαx(φ(t)−∆2(x(t)))‖L2
w(I) ≤

‖Dαy(φ(t)−∆2(y(t)))−Dαx(φ(t)−∆2(y(t)))‖L2
w(I) + LxαL∆2

‖y(t)− x(t)‖L2
w(I) ,

(103)
for the derivative delay term associated with Eq. (83) where the functions
Dαx and ∆2 are assumed to satisfy the Lipschitz conditions (Eqs. (94) and
(96)).
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Error bounds

Theorem 6: Let x(t) be the exact solution of Eq. (83) and u(t)
be the best approximation of x(t) based on the Jacobi
polynomilas. If x ∈ Hµ

w(I) then for µ ≥ 0, we can write

‖x(t)− u(t)‖L2
w(I) ≤ ζ L

1−L3
M−µ

∥∥x(α+µ)
∥∥
L2
w(I)

, (104)

for 1 ≤ r ≤ µ we have,

‖x(t)− u(t)‖Hr
w(I) ≤ ζ

L

1− L3

M2r− 1
2
−µ∥∥x(α+µ)

∥∥
L2
w(I)

, (105)

provided that M is sufficiently large, f, x, Dαx, ∆1 and ∆2

satisfy the Lipschitz conditions (Eqs. (92)-(96)) with L3 < 1, and
ζ is a constant independent of N.
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Error bounds

Proof. Subtracting (89) from (83), integrating, and taking a norm of both
sides, we obtain

‖x(t)− u(t)‖L2
w(I) ≤

Iα[‖f(s, x(s), x(τ(s)−∆1(x(s))), Dαx(φ(s)−∆2(x(s))))−
f(s, u(s), u(τ(s)−∆1(u(s))), Dαu(φ(s)−∆2(u(s))))‖L2

w(I)

]
≤

Iα
[
L1 ‖x(s)− u(s)‖L2

w(I) +L2 ‖x(τ(s)−∆1(x(s)))− u(τ(s)−∆1(u(s)))‖L2
w

+

L3 ‖Dαx(φ(s)−∆2(x(s)))−Dαu(φ(s)−∆2(u(s)))‖L2
w(I)

]
,

(106)
where Dαu(t) = Ĝ(t)Ĉ and u(t) = Ĝ(t, α)Ĉ +X0.
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Error bounds

Let Let Ψ(t) = ‖x(t)− u(t)‖L2
w(I) , Υ(t) = max

0≤s≤t
Ψ(s), and

χ(t) = max
0≤s≤t

‖Dαx(s)−Dαu(s)‖L2
w(I) .

Substituting Ψ, Υ and χ into the above inequality and using (102)-(103) we
have

Ψ(t) ≤
Iα[L1Υ(s) + L2 ‖x(τ(s)−∆1(u(s)))− u(τ(s)−∆1(u(s)))‖2 + L2LxL∆1Υ(s)
L3 ‖Dαx(φ(s)−∆2(u(s)))−Dαu(φ(s)−∆2(u(s)))‖2 + L3LxαL∆2Υ(s)] ≤
Iα[(L1 + L2 + L2LxL∆1

+ L3LxαL∆2
)Υ(s) + L3χ(s)].

(107)
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Error bounds

Subtracting (89) from (83) and using (102)-(103) yields

‖Dαx(t)−Dαu(t)‖L2
w(I) =

‖f(t, x(t), x(τ(t)−∆1(x(t))), Dαx(φ(t)−∆2(x(t))))
−f(t, u(t), u(τ(t)−∆1(u(t))), Dαu(φ(t)−∆2(u(t))))‖L2

w(I)

≤ L1Υ(t) + L2 ‖x(τ(t)−∆1(u(t)))− u(τ(t)−∆1(u(t)))‖L2
w(I)

+L2LxL∆1Υ(t) + L3 ‖Dαx(φ(t)−∆2(u(t)))−Dαu(φ(t)−∆2(u(t)))‖L2
w(I)

+L3LXαL∆2Υ(t) ≤ (L1 + L2 + L2LxL∆1 + L3LxαL∆2) Υ(t) + L3χ(t).
(108)
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Error bounds

Then, from (108), we find

χ(t) ≤ (L1 + L2 + L2LxL∆1 + L3LxαL∆2) Υ(t) + L3χ(t). (109)

As 0 < L3 < 1, inequality (109) becomes

χ(t) ≤
(
L1 + L2 + L2LxL∆1 + L3LxαL∆2

1− L3

)
Υ(t). (110)
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Error bounds

Letting L = L1 + L2 + L2LxL∆1 + L3LxαL∆2 , substituting (110)
into (107), using (81) and (99) leads to

Ψ(t) = ‖x(t)− u(t)‖L2
w(I) ≤ Iα

(
LΥ(s) +

(
L3L

1−L3

)
Υ(s)

)
= L

1−L3
IαΥ(s) ≤ C

tαf
α!

L
1−L3

M−µ
∥∥X(α+µ)

∥∥
L2
w(I)

,

(111)
for 1 ≤ r ≤ µ we have,

‖x(t)− u(t)‖Hr
w(I) ≤ C

tαf
α!

L

1− L3

M2r− 1
2
−µ∥∥x(α+µ)

∥∥
L2
w(I)

. (112)
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Accuracy of the numerical method

In this section, to demonstrate the applicability and accuracy of
the present method we consider Eq. (83).To vanish the residual of
the problem in Eq. (90), we consider three different collocation
points: Equidistant points, Zero of the Legendre polynomials, and
Extreme points of the Chebyshev polynomial. Using these
collocation points, first, we calculate the error of the present
method for α = 1. Then we use the collocation point that has
fewer errors for α = 1 to solve the problem for α 6= 1. We use the
least-squares approximation and evaluate the absolute maximum
error as |xi(t)− xiGM(t)|. Also, we use the piecewise least-squares
approximation in some cases to increase the accuracy.
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Accuracy of the numerical method

Example: Consider a 3–dimensional time-dependent delay system

Dαx1(t) = Dαx2(
√

sin(t)) + x3(
√

sin(t)) + 2tDαx3(t2),
Dαx2(t) = −2x1(

√
t) + x2(e−2t) + x3(t)−Dαx3(e−2t),

Dαx3(t) = x2(t) + tDαx2(t− sin(t)) + tx3(t− sin(t)),

that xi(t) = 0, for i = 1, 3 and xi(t) = 0, for i = 2 and has the
exact solution , x1(t) = sin(t2), x2(t) = cos(t), x3(t) = sin(t).
Table 1 shows the absolute error for three different choices of
collocation points with M = 7, α = 1. We use the extreme points
of the Chebyshev polynomial as the collocation point to solve the
example for α 6= 1. In Table 2, we used the piecewise least-squares
approximation with four subintervals and M = 7.
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Accuracy of the numerical method

Equidistant Zero of the Extreme points of
points Legendre the Chebyshev

x1(t) 7.0× 10−6 3.5× 10−7 5.0× 10−7

x2(t) 3.5× 10−6 4.0× 10−8 1.0× 10−7

x3(t) 6.0× 10−6 2.5× 10−8 6.0× 10−8

Table: Absolute error with the different choices of collocation points
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Accuracy of the numerical method

Method x1(t) x2(t) x3(t)
Multi–quadric approximation 2× 10−7 2× 10−7 4× 10−7

Present method with M = 7 4× 10−12 7× 10−13 6× 10−13

Table: Absolute error for Case 1 by using the present method and
Multi–quadric approximation.
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Thank you
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