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Motivation

Cryptography

Algebraic attacks [CP02]

Multivariate public key cryptography [FJ03]

Rank-metric Code-based cryptography [BBC
+
20]

Hyperelliptic curves

Other applications

Computer Aided Geometric Design (CAGD).

Robotics (inverse kinematics).

Celestial mechanics (central configurations).
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Problem Setup

K a finite field.

K [ x ] = k[x1, . . . , xn] ring of polynomials.

K n n-dimensional a�ne space over K .

Problem

Find all solutions in kn to a system of polynomial equations

f1(x1, . . . , xn) = 0

.

.

.

fm(x1, . . . , xn) = 0

Subproblems:

I Is there a solution?

I Can we list all solutions?

I What is the dimension of the solution space?

I What is the computational cost of solving the system?
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Example

Consider the system over GF(7)

x2 + xy + 2x + 5y2 + 6y + 6 = 0

x2 + 3xy + 2x + 6y2 + y + 2 = 0.

It can be rewritten as

x + 5y3 + 6y2 + 3y + 1 = 0

y4 + 4y3 + 4y2 + 6 = 0

The second polynomial has 3 roots in GF(7)

y = 6, , y = 3, and y = 2.

Substituting in the first one, we obtain equations in x that can be factored

to obtain

(1, 6), (4, 3), and (6, 2).

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 6 / 19



Example

Consider the system over GF(7)

x2 + xy + 2x + 5y2 + 6y + 6 = 0

x2 + 3xy + 2x + 6y2 + y + 2 = 0.

It can be rewritten as

x + 5y3 + 6y2 + 3y + 1 = 0

y4 + 4y3 + 4y2 + 6 = 0

The second polynomial has 3 roots in GF(7)

y = 6, , y = 3, and y = 2.

Substituting in the first one, we obtain equations in x that can be factored

to obtain

(1, 6), (4, 3), and (6, 2).

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 6 / 19



Example

Consider the system over GF(7)

x2 + xy + 2x + 5y2 + 6y + 6 = 0

x2 + 3xy + 2x + 6y2 + y + 2 = 0.

It can be rewritten as

x + 5y3 + 6y2 + 3y + 1 = 0

y4 + 4y3 + 4y2 + 6 = 0

The second polynomial has 3 roots in GF(7)

y = 6, , y = 3, and y = 2.

Substituting in the first one, we obtain equations in x that can be factored

to obtain

(1, 6), (4, 3), and (6, 2).

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 6 / 19



Example

Consider the system over GF(7)

x2 + xy + 2x + 5y2 + 6y + 6 = 0

x2 + 3xy + 2x + 6y2 + y + 2 = 0.

It can be rewritten as

x + 5y3 + 6y2 + 3y + 1 = 0

y4 + 4y3 + 4y2 + 6 = 0

The second polynomial has 3 roots in GF(7)

y = 6, , y = 3, and y = 2.

Substituting in the first one, we obtain equations in x that can be factored

to obtain

(1, 6), (4, 3), and (6, 2).

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 6 / 19



Definitions / Notation

V(f1, . . . , fm) a�ne variety.

I = hf1, . . . , fmi ideal generated by.

V(I ) variaty of the ideal I .

I(V ) the ideal of variety V

Monomial ordering <: total, well-ordering, and preserved under

multiplication, e.g. lex, glex.

Degree, multidegree

Leading term/coef/monomial
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Roadmap

Problem: How to find V(f1, . . . , fm)?

If we had an “echelonized” basis,

then we can solve for the last variable.

Next, for each xn = an we substitute in the other equations to find

partial candidate solutions

Continue this way until first variable.

Questions:

How to find such a basis? ! Groebner basis lex order.

What guarantees that we can continue this process? ! Elimination

theorem.
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A Division Algorithm in K [ x ]

Theorem

Given <, F = (f1, . . . , fm), every f 2 K [ x ] can be written as

f = a1f1 + · · ·+ amfm + r ,

where ai , r 2 K [ x ], so that no monomial in r is divisible by any leading
term of fi ’s.

No unique reminders.

It does not solve ideal membership.
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A Division Algorithm in K [ x ]

normal form(g , F )

Require: F finite tuple in K [ x ]
Require: g 2 K [ x ]
1: h := g
2: while 9f 2 F , t 2 terms(h) s.t LT(f ) | t do
3: let f 2 F , t 2 terms(h) s.t LT(f ) | t
4: h := h � t

LT(f )
· f

5: return h
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Groebner Basis - Definition

Monomial Ideals

I is a monomial ideal if 9A ✓ Zn
�0

, s.t I = hx↵ : ↵ 2 Ai.

Dickson’s Lemma: Any monomial ideal I = hx↵ : ↵ 2 Ai is generated
by a finite subset of {x↵ : ↵ 2 A}.

Hilbert Basis Theorem: Every ideal in K [ x ] has a finite generating

set.

A finite subset G of an ideal I is called Groebner basis if

hLT(g1), . . . , LT(gt)i = hLT(I )i .

Every ideal 6= 0 has a Groebner basis and it generates the ideal.

Every ascending chain of ideals eventually stabilizes.

If I = hf1, . . . , fmi, then V(I ) = V(f1, . . . , fm).
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Groebner Basis - Properties

Proposition

Let G be a GB for an ideal I , and f 2 K [ x ]. Then there exists a unique
r 2 K [ x ] s.t f = g + r for some g 2 I and no term of r is divisible by any
LT of G .

r is obtained by the division algorithm.

f 2 G i↵ r = 0.
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Groebner Basis - Computation

Definition

Let f , g 2 K [ x ] be non-zero. The S-polynomial of f and g is

S(f , g) =
lcm(LM(f ), LM(g))

LT(f )
f � lcm(LM(f ), LM(g))

LT(g)
g .

Theorem (Buchberger’s Criterion)

Let I = hg1, . . . , gti be an ideal in K [ x ]. G is a GB i↵, for all i 6= j , the
reminder on division of S(gi , gj) by G is zero.
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Buchberger’s Algorithm

Require: F is a finite subset of K [ x ]
1: G := F
2: B := {{g1, g2} | g1, g2 2 G , g1 6= g2}
3: while B 6= ; do
4: let {g1, g2} be an element of B
5: B := B \ {{g1, g2}}
6: h := S(g1, g2)
7: r := normal form(h,G )

8: if r 6= 0 then
9: B := B [ {{g , r} | g 2 G}

10: G := G [ {r}
11: return G
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Improvements Until the 90’s

1) Pair order selection. Normal strategy: choose min lcm pair.

2) When a new basis element is produced, reduce all elements with

respect to it.

3) Criteria to discard a-priori pairs which are known to reduce to zero.
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Elimination Ideals

Definition

Given I = hf1, . . . , fmi ⇢ K [ x ], the `-th elimination ideal is the ideal of

K [x`+1, . . . , xn] defined by

I` = I \ K [x`+1, . . . , xn].

Theorem

Let I be an ideal of K [ x ] and G a GB of I w.r.t lex order
x1 > x2 > · · · > xn. Then for every 0  `  n, the set

G` = G \ K [x`+1, . . . , xn]

is a GB of I`.
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Other Relevant Results

Extension Theorem: Gives a condition for when a partial solution

can be extended (for algebraically closed field).

Clousure Theorem: V(I`) is the smallest a�ne variety containing

⇡`(V ) (for algebraically closed field).

Nullstellensatz: precisely determines I(V(I )) (for algebraically closed

field).
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Minicourse Outline

Motivation.

Groebner bases and elimination theory.

Linear algebra to compute Groebner bases.

Syzygies and the complexity of Groebner bases computation.
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Outline for Part II

1 The XL Algorithm

2 Theoretical Foundations

3 The F4 Algorithm
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Recall the Buchberger Algorithm

Require: F is a finite subset of K [ x ]
1: G := F

2: B := {{g1, g2} | g1, g2 2 G , g1 6= g2}
3: while B 6= ; do
4: let {g1, g2} be an element of B
5: B := B \ {{g1, g2}}
6: h := S(g1, g2)
7: r := normal form(h,G )
8: if r 6= 0 then
9: B := B [ {{g , r} | g 2 G}

10: G := G [ {r}
11: return G
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General Framework

LM(hp1, . . . , pmi) = hLM(g1), . . . , LM(gr )i

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 5 / 17



XL(Extended Linearization) [CKPA00]
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Staggered Linear Basis

The idea of using linear algebra to compute Groebner bases dates
back to [Laz83].

Key observation: an homogeneous ideal I ⇢ K [ x ] is a K -vector
space, and its degree d component Id is a finite dimensional subspace
(Id in the a�ne case).

Definition

Let V be a k-subspace of K [ x ]. A subset B of V \ {0} is called a
staggered linear basis of V , if B generates V and B is staggered, that is,
for all f 6= g 2 B , LM(f ) 6= LM(g).

Theorem

Let B be a staggered linear basis for an ideal I in K [ x ]. Then, the set
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Gradation

Definition

Let I be an ideal and G = {g1, . . . , gm} a set of generators of I . G is a
d-Groebner basis of I if LM(I ) \ Rd ✓ hLM(g1), . . . , LM(gm)i.

Proposition

Let B be a staggered linear basis for Id . Then, the set

{f 2 B | for all f 6= g 2 B , LM(g) does not divide LM(f )}

is a minimal d-Groebner basis for I .

Proposition

Let I be an ideal of K [ x ]. There exists d0 such that for all d � d0, every

d-Groebner basis of I is a Groebner basis of I .
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Macaulay Matrix

Definition

Given F = {f1, . . . , fm} ⇢ R and d � 0

the Maucalay matrix of F in degree d , denoted by Md(F ), is the
matrix whose columns are indexed by monomials of degree  d and
the rows correspond to polynomial x↵fi with deg(x↵fi ) = d .

Similarly define Md(F ).

Given a matrix M whose columns are indexed by monomials, we can
define the polynomial representation of M denoted by P(M).

Given F homogeneous, {x↵fi : deg(x↵fi )  d} is a linear basis for Id .

An echelon form of Md(F ) is a staggered linear basis for Id .

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 9 / 17



Macaulay Matrix

Definition

Given F = {f1, . . . , fm} ⇢ R and d � 0

the Maucalay matrix of F in degree d , denoted by Md(F ), is the
matrix whose columns are indexed by monomials of degree  d and
the rows correspond to polynomial x↵fi with deg(x↵fi ) = d .

Similarly define Md(F ).

Given a matrix M whose columns are indexed by monomials, we can
define the polynomial representation of M denoted by P(M).

Given F homogeneous, {x↵fi : deg(x↵fi )  d} is a linear basis for Id .

An echelon form of Md(F ) is a staggered linear basis for Id .

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 9 / 17



Macaulay Matrix

Definition

Given F = {f1, . . . , fm} ⇢ R and d � 0

the Maucalay matrix of F in degree d , denoted by Md(F ), is the
matrix whose columns are indexed by monomials of degree  d and
the rows correspond to polynomial x↵fi with deg(x↵fi ) = d .

Similarly define Md(F ).

Given a matrix M whose columns are indexed by monomials, we can
define the polynomial representation of M denoted by P(M).

Given F homogeneous, {x↵fi : deg(x↵fi )  d} is a linear basis for Id .

An echelon form of Md(F ) is a staggered linear basis for Id .

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 9 / 17



Macaulay Matrix

Definition

Given F = {f1, . . . , fm} ⇢ R and d � 0

the Maucalay matrix of F in degree d , denoted by Md(F ), is the
matrix whose columns are indexed by monomials of degree  d and
the rows correspond to polynomial x↵fi with deg(x↵fi ) = d .

Similarly define Md(F ).

Given a matrix M whose columns are indexed by monomials, we can
define the polynomial representation of M denoted by P(M).

Given F homogeneous, {x↵fi : deg(x↵fi )  d} is a linear basis for Id .

An echelon form of Md(F ) is a staggered linear basis for Id .

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 9 / 17



Macaulay Matrix

Definition

Given F = {f1, . . . , fm} ⇢ R and d � 0

the Maucalay matrix of F in degree d , denoted by Md(F ), is the
matrix whose columns are indexed by monomials of degree  d and
the rows correspond to polynomial x↵fi with deg(x↵fi ) = d .

Similarly define Md(F ).

Given a matrix M whose columns are indexed by monomials, we can
define the polynomial representation of M denoted by P(M).

Given F homogeneous, {x↵fi : deg(x↵fi )  d} is a linear basis for Id .

An echelon form of Md(F ) is a staggered linear basis for Id .

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 9 / 17



Lazard’s Algorithm (XL)

Require: P a list of polynomials.
1: G := echelon(P)
2: A := X ⇥ G

3: while no solution found do
4: H := {xg | (x , g) 2 A}
5: eH := echelon(H [ G )

6: eH+ :=
n
h 2 eH | LM(h) /2 LM(G )

o

7: G := G [ eH+

8: A := X ⇥ eH+

9: return G
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Non-Homogeneous Case

Let F = {f1, . . . , fm} ⇢ R and d � 0

Let M = Md .

Let M̃ be an echelon form of M.

Add new rows to M̃ for all f 2 P(M̃) and u monomial
s.t. deg(uf )  d and uf /2 rowsp(M̃)

Repeat the process successively until there is nothing more to add.

We will refer to the resulting matrix as the Saturated Macaulay
matrix of F , and denote it by SMd(F )

There exists an integer d0 such that for all d � d0, P(SMd(F )) is a
staggered linear basis for Id .
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The Mutant-XL Algorithm [DCS+08]

Require: P a finite subsets of K [ x ] in row echelon form
1: G := P

2: A := X ⇥ G

3: while no solution found do
4: d := min {deg(x , g) | (x , g) 2 A}
5: B := {(x , g) 2 A | deg(x , g) = d}
6: A := A \ B
7: H := {xg | (x , g) 2 B}
8: eH := echelon(H [ G )

9: eH+ :=
n
h 2 eH | LM(h) /2 LM(G )

o

10: G := G [ eH+

11: A := A [ (X ⇥ eH+)
12: return G
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Termination Condition

Check Buchberger’s criterion.

In certain cases, if we know something about the ideal or about its
Groebner bases, it is possible decide termination more e�ciently.

In the homogeneous zero-dimensional case, check if Id = Rd .

In the case of a single solution, check if there are n linear equations.

Perhaps we can estimate a suitable d .
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The F4 Algorithm [Fau99]

Require: F is a finite subset of K [ x ]
1: G := F

2: B := {{g1, g2} | g1, g2 2 G , g1 6= g2}
3: while B 6= ; do
4: let B⇤ be a nonempty subset of B
5: B := B \ B⇤

6: L :=
n

lcm(LM(f ),LM(g))
LM(f ) · f | {f , g} 2 B

⇤
o

7: H := basic symb pre proc(L,G )
8: eH := a row echelon form of H
9: eH+ := {h 2 eH | LM(h) /2 LM(H)}

10: G := G [ eH+

11: B := B [ {{h, g} | h 2 eH+, g 2 G , h 6= g}
12: return G
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basic symb pre proc(L,G )

Require: L and G are finite subsets of K [ x ]
1: H := L

2: done := LM(H)
3: while M(H) 6= done do
4: let t be an element of (M(H) \ done)
5: done = done [ {t}
6: if there exist g 2 G s.t. LM(g) | t then
7: choose g 2 G s.t. LM(g) | t
8: H := H [ { t

LM(g) ⇤ g}
9: return H
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CIMPA-ICTP Research in Pairs
2023

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 1 / 28



Minicourse Outline

Motivation.

Groebner bases and elimination theory.

Linear algebra to compute Groebner bases.

Computational Complexity of Groebner bases computation.
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Outline for Today

1 Avoid Zero Reductions

2 Solving Degree

3 Matrix Reduction Algorithms
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Reduction to Zero

Definition

Given <, G = {g1, . . . , gm} ⇢ K [ x ], and f 2 K [ x ], we say that f
reduces to zero modulo G , denoted f !G 0, if f = a1g1 + · · ·+ amgm,
for some ai 2 K [ x ] s.t. LM(f ) � LM(aigi ) for all i .

The order of G does not matter

Enough for Groebner bases

Proposition

Let f , g 2 K [ x ] be such that

lcm(LM(f ), LM(g)) = LM(f ) LM(g).

Then S(f , g) !{f ,g} 0.
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Syzygies

Definition

Let F = (f1, . . . , fm) 2 K [ x ]m. Then H = (h1, . . . , hm) 2 K [ x ]m is called
a syzygy of F if

F · H =
mX

i=1

fihi = 0.

The set of all syzygies of F forms an K [ x ]-module graded by
max deg hi fi .

We will denote by S(F ) the set of all syzygies of (LT(f1), . . . , LT(fm)).

Note that S-polynomials are syzygies, lets denote them by

Sij =
lcm(LM(fi ), LM(fj))

LT(fi )
ej �

lcm(LM(fi ), LM(fj))

LT(fj)
ei

{Sij : 1  i < j  m} is a basis of S(F ).
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Syzygies and Groebner Basis

Theorem

Let G = (g1, . . . , gm) be a basis for an ideal I , and B a homogeneous basis
for S(G ). Then G is a GB i↵, for all S 2 B ,

S · G !G 0.
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Remove Zero-Reductions

Proposition

Let G = (g1, . . . , gm) and S ✓ {Sij : 1  i < j  m} be a basis for S(G ).
Suppose i , j , k are such that

LT(gk) | lcm(LM(gi ), LM(gj)).

Then, if Sik , Sjk 2 S , then S � {Sij} is also a basis for S(G ).
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Improved Buchberger Algorithm

Require: F is a finite subset of K [ x ]
1: G := ;
2: B := ;
3: for all f in F do

4: (G ,B) := update(G ,B , f )
5: while B 6= ; do

6: let {g1, g2} be an element of B
7: B := B \ {{g1, g2}}
8: h := S(g1, g2)
9: r := normal form(h,G )

10: if r 6= 0 then

11: (G ,B) := update(G ,B , r)
12: return G
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update(G ,B , h)

Require: G subset of K [ x ], B a set of pairs, 0 6= h 2 K [ x ].
1: C := {{h, g} | g 2 G}
2: for all {h, g1} 2 C do

3: if (LM(h) and LM(g1) are NOT disjoint) and
(there exist {h, g2} 2 C \ {{h, g1}} s.t.

lcm(LM(h), LM(g2)) | lcm(LM(h), LM(g1))) then
4: C := C \ {h, g1}
5: for all {h, g} 2 C do

6: if LM(h) and LM(g) are disjoint then
7: C := C \ {h, g}
8: for all {g1, g2} 2 B do

9: if (LM(h) | lcm(LM(g1), LM(g2)) and
(lcm(LM(g1), LM(h)) 6= lcm(LM(g1), LM(g2))) and
(lcm(LM(h), LM(g2)) 6= lcm(LM(g1), LM(g2))) then

10: B := B \ {g1, g2}
11: B := B [ C
12: for all g 2 G do

13: if LM(h) | LM(g) then
14: G := G \ {g}
15: return G ,BCabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 11 / 28



The F4 Algorithm with update

Require: F is a finite subset of K [ x ]
1: G := ;
2: B := ;
3: for all f 2 F do

4: (G ,B) := update(G ,B , f )
5: while B 6= ; do

6: let B⇤ be a nonempty subset of B
7: B := B \ B⇤

8: L :=
n

lcm(LM(f ),LM(g))
LM(f ) · f | {f , g} 2 B⇤

o

9: H := basic symb pre proc(L,G )
10: eH := a row echelon form of H
11: eH+ := {h 2 eH | LM(h) /2 LM(H)}
12: for all h 2 eH+

do

13: (G ,B) := update(G ,B , h)
14: return G
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The F5 Algorithm [Fau02] (Matrix Version)

Signature

Given F = (f1, . . . , fm), each row tfi of the Macaulay matrix Md(F ) is
labeled with a signature (t, fi ).

Keep labels throughout Gaussian elimination.

Reduce only downwards during Gaussian and do not switch rows.

An order among signatures is preserved.

Rewritten Criterion

Given an echelon form M̃ of the Macaulay matrix Md(F ), use the
non-zero rows of M̃ to construct Md+1(F ), avoiding repetitions.
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The F5 Algorithm (Matrix Version)

Notation

Md ,i (F ) denotes the Macaulay matrix of (f1, . . . , fi ) of degree d .

Theorem (F5 Criterion)

For all j < m, if we have a row labeled (t, fj) in the echelon form of
MD�dm,m�1 that has leading term t 0, then the row (t 0, fm) in MD,m is
redundant.
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1 Avoid Zero Reductions

2 Solving Degree

3 Matrix Reduction Algorithms

Cabarcas (Unal Colombia) Solving Non-linear Eqns. CIMPA-ICTP 2023 15 / 28



Index of Regularity

Definition

The Hilbert function of K [ x ]/I is defined by
HFK [ x ]/I (d) = dim(K [ x ]d/Id).

The Hilbert series of K [ x ]/I is the power series whose coe�cients
are the Hilbert function

HSK [ x ]/I (z) =
1X

d=0

HFK [ x ]/I (d)z
d .

There exists D such that for d � D, HF is a polynomial in d .

The smallest such D is called the index or regularity.

The index or regularity is the largest degree of any polynomial in the
reduced GB of I .
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Regular

Definition

A sequence F = (f1, . . . fm) of non-zero homogeneous polynomials is called
regular if for i = 2, . . . ,m, for all g 2 K [ x ], gfi 2 hf1, . . . , fi�1i implies
g 2 hf1, . . . , fi�1i.

In other words:

fi is not a zero divisor in K [ x ]/ hf1, . . . , fi�1i.

Proposition

F is regular i↵ the syzygy module of F is generated by

{fiej � fjei : 1  i < j  m}.
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Index of Regularity of Regular Sequence

Theorem

F is regular i↵ the following is a short exact sequence

0 ����!
⇣

R
hPi�1i

⌘

d�di

⇥fi����!
⇣

R
hPi�1i

⌘

d

⇡����!
⇣

R
hPi i

⌘

d
����! 0 ,

i↵ the Hilbert series of F is

HSK [ x ]/I (z) =

Qm
i=1

(1� zdi )

(1� z)n
.

In this case the index of regularity is

mX

i=1

di �m + 1.
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Semi-Regularity

Semi-regular extend the notion of regularity when there are more
equations than variables [BFS04].

f1, . . . fm homogeneous and I = hf1, . . . fmi zero dimensional.

Thus dim(K [ x ]/I ) < 1
and the Hilbert series

HSK [ x ]/I (z)

is a polynomial.
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Semi-Regularity

Definition

Let P = (p1, . . . , pm) be a sequence of homogeneous polynomials, d � 0.
P is d-regular if for all g 2 R and all 1  i  m, gpi 2 hPi�1i and
deg(gpi ) < d imply g 2 hPi�1i.

Definition

Let I be a homogeneous ideal in R . The degree of regularity of I is

min {d � 0 | dim(Id) = dim(Rd)} .
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Semi-Regularity

Definition

A homogeneous sequence of polynomials P = (p1, . . . , pm) in K [ x ] is
semi-regular if it is D-regular, where D is the degree of regularity of hPi.

Theorem

P is semi-regular

i↵ the Hilbert series of K [ x ]/I is

HSK [ x ]/I (z) =

Qm
i=1

(1� zdi )

(1� z)n

�

+

.

i↵ the ideal I has dimension 0 and every syzygy of F of degree at
most deg(HSK [ x ]/I ) is in the module generated by the trivial syzygies
hfiej � fjei i.
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First Fall Degree

Notation

F top is the highest degree part of each poly in F .

Syz(.) is the module of syzygies.

Triv(.) is the submodule generated by

{fiej � fjei : 1  i < j  m} [ {f q�1

i ei : 1  im}.

Definition

Let F ✓ K [ x ]. The first fall degree of F is

d↵ (F ) = min{d 2 N : Syz(F top)d/Triv(F
top)d 6= 0}.
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Last Fall Degree
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3 Matrix Reduction Algorithms
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Matrix Reduction Algorithms

For small systems we can use a fast matrix reduction algorithm such
as Strassen. In this case the time complexity is

O

✓✓
n + D

n

◆◆2.81

For larger systems a sparse linear algebra algorithm is required,
e.g. [FL10].

The complexity of such algorithms depends on the sparsity of the
matrix.

There are hybrid algorithms such as crossbread that can be faster for
small fields [JV18].

Quantum algorithms [BY18].

Fukuoka MQ Challenge
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Gröbner Bases. Master’s thesis, University of Cincinnati, 2010.

Cabarcas, D. Gröbner Bases Computation and Mutant Polynomials. PhD
Dissertation, University of Cincinnati, 2011.

Albrecht, M. Algorithmic Algebraic Techniques and their Application to
Block Cipher Cryptanalysis. 2010. PhD Dissertation, Royal Holloway,
University of London.

Spaenlehauer, P. Résolution de systèmes multi-homogènes et déterminantiels
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