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Introduction

The aim of this lecture is to recall classical results and
constructions concerning hypersurfaces with vanishing Hessian
(see [GN, Pe, Pt1, Pt2, Pt3]). Some of this classical work was
revisited in [CRS, GR, Lo, GRu, Ru, Wa1, BW]. A modern
reference that contains the omitted details of this lecture is
[Ru, Chapter 7].
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Gauss in his classical paper on curvature of surfaces calculates
the (Gaussian) curvature of a implicit surface (see [Ga]). The
formulae contains a Hessian determinant. In this paper he also
made a discussion about local properties of surfaces of zero
curvature.

R. Gondim On Hessians and the Lefschetz properties



The algebraic counterpart of zero curvature is the concept of
developable surface. B. Segre proved that a projective complex
surface X = V (f ) ⊂ P3 is developable if and only if it is a
cone or the tangent surface of a curve (see [Se])
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The Hessian

Definition

Let X = V (f ) ⊂ PN be a reduced hypersurface. The
Hessian matrix of f is

Hessf =

[
∂2f

∂xi∂xj

]
0<i ,j<N

We also call it the Hessian matrix of X and write HessX
since we will be interested in properties of this matrix
which are well defined modulo the multiplication of f by a
non zero constant. The determinant of the matrix HessX
will be denoted by hessX and called the hessian of X .
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A wrong claim by Hesse

Since cones have vanishing Hessian and Tangent surfaces no,
one can suspect that it inspires Hesse’s claim:

Claim (Hesse)

Let f ∈ C[x1, . . . , xN ] be an irreducible homogeneous
polynomial. Then hessf = 0 if and only if up to a projective
transformation f does not depend on all the variables (see
[He1, He2]).
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Projective cones

For an arbitrary set S ⊆ PN we shall indicate by < S > its
linear span in PN and S ⊆ PN is said to be degenerated if
< S >⊊ PN . By abuse of notation we use < p, q > to denote
the line through two distinct points p, q ∈ PN .

Definition

Let X ⊂ PN be a projective variety. The vertex of X is

Vert(X ) = {p ∈ X | < p, q >⊂ X , ∀q ∈ X}.

A projective variety X ⊂ PN is a cone if Vert(X ) ̸= ∅.
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Projective cones

Proposition

Let X = V (f ) ⊂ PN be a hypersurface of degree d. Then the
following conditions are equivalent:

(i) X is a cone;

(ii) There exists a point p ∈ X of multiplicity d;

(iii) The partial derivatives ∂f
∂x0

, ∂f
∂x1

, ..., ∂f
∂xN

of f are linearly
dependent;

(iv) Up to a projective transformation, f depends on at most
N variables.

(v) The dual variety of X , X ∗ ⊂ (PN)∗, is degenerated, that
is contained in a hyperplane of (PN)∗.
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Cones form a trivial class of hypersurfaces with vanishing
hessian. Indeed if X is a cone up to a linear change of
coordinates the form f does not depend on all the variables.
Therefore in this case the Hessian matrix has at least a null
row (and a null column), yielding hessX ≡ 0.
The case d = 2, the claim is trivial from basic linear algebra.
The converse is not true in general if d ≥ 3. In fact, there are
counter examples for any d ≥ 3 and N ≥ 4 as we will see in
the sequel. We now define the polar map of a hypersurface in
order to begin to clarify the deep geometrical consequences of
the condition hessX ≡ 0.
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The polar map

Definition

The polar map (or gradient map) of a hypersurface
X = V (f ) ⊂ PN is the rational map φX : PN 99K (PN)∗

given by the derivatives of f :

φX (p) = (
∂f

∂x0
(p) :

∂f

∂x1
(p) : . . . :

∂f

∂xN
(p)).

Let Z = φX (PN) ⊆ (PN)∗ be the image of the polar map.
The base locus scheme of the polar map is the singular
scheme of X which will be denoted by

Sing(X ) := V (
∂f

∂x0
, . . . ,

∂f

∂xN
) ⊂ PN .

We define Y := Sing(X )red.
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Un esempio semplicissimo

The easiest counterexample to Hesse’s claim is
f = xu2 + yuv + zv 2 ∈ K[x , y , z , u, v ] and it was explicitly
posed by Perazzo in [Pe], who called it un esempio
semplicissimo.

R. Gondim On Hessians and the Lefschetz properties



The key point to construct counterexamples is to figure out
that the vanishing of the Hessian is equivalent to the algebraic
dependence among the partial derivatives (see loc. cit.). On
the other hand, to be a cone is equivalent to the linear
dependence among the partial derivatives. This result is
sometimes referred as Gordan-Noether’s criterion since it was
implicitly used in [GN].
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Gordan-Noether criterion

Proposition (Gordan-Noether)

Let f ∈ K[x0, . . . , xN ] be a reduced polynomial and consider
X = V (f ) ⊂ PN . Then

(i) X is a cone if and only if fX0 , . . . , fXN
are linearly

dependent (equivalently the polar image is degenerated);

(ii) hessf = 0 if and only if fX0 , . . . , fXN
are algebraically

dependent (equivalently the polar map is not dominant).
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Gordan-Noether Theorem

Theorem (Gordan-Noether)

Let X = V (f ) ⊂ PN , N ≤ 3, be a hypersurface such that
hessf = 0. Then X is a cone.
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In [GN] the authors produced a series of counter-examples to
Hesse’s claim for each N ≥ 4 and for each degree d ≥ 3. The
key point of the construction was to figure out that the
vanishing of the Hessian is equivalent to the algebraic
dependence among the partial derivatives (see loc. cit.).
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Counter-examples to Hesse claim

Proposition (Gordan-Noether)

For each N ≥ 4 and d ≥ 3 there exist irreducible
hypersurfaces X = V (f ) ⊂ PN , of degree deg(f ) = d, not
cones, such that hessf = 0.
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We recall the classical constructions of Gordan and Noether
([GN]), Permutti ([Pt1, Pt2, Pt3]) and Perazzo ([Pe]) from an
algebraic point of view.

Definition

Let X = V (f ) ∈ PN , N ≥ 4 be an irreducible hypersurface not
a cone. We say that X is a Perazzo hypersurface of degree d
if N = n +m, n,m ≥ 2 and f ∈ K[x0, . . . , xn, u1, . . . , um] is a
reduced polynomial of the form

f = x0g0 + . . .+ xngn + h

where gi ∈ K[u1, . . . , um]d−1 for i = 0, . . . , n are algebraically
dependent but linearly independent and h ∈ K[u1, . . . , um]d .
The polynomial f is called Perazzo polynomial.
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Perazzo hypersurfaces

Proposition (Gordan-Noether, Perazzo)

Perazzo hypersurfaces are not cones and have vanishing
Hessian.
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Remark

Notice that if n + 1 > m, then gi for i = 0, . . . , n are
algebraically dependent automatically. Perazzo original
hypersurfaces are of degree 3 and he constructed a series of
cubic hypersurfaces in PN for arbitrary N ≥ 4 with
vanishing Hessian and not cones. These hypersurfaces are,
modulo projective transformations, all cubic hypersurfaces
with vanishing Hessian and not cones in PN for N = 4, 5, 6,
(see [Pe, GRu]).
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Definition

Let R = K[x0, . . . , xn, u1, . . . , um]. Let Q =
n∑

i=0

x0gi ∈ R be a

Perazzo polynomial. Let µ = ⌊d
e
⌋. Let Pj ∈ K[u1, . . . , um]d−je

for j = 0, . . . , µ. We say that

f =

µ∑
j=0

Q jPj

is a Permutti polynomial of type (m, n, e). A hypersurface
X = V (f ) ⊂ PN , not a cone is called a Permutti hypersurface
if f is a reduced Permutti polynomial.
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Permutti hypersurfaces

Proposition (Permutti)

Permutti hypersurfaces are not cones and have vanishing
Hessian.
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Gordan-Noether classification

The main result of Gordan-Noether in [GN] is the following
one. A geometric proof in modern terms can be found in
[GR, Ru].

Theorem (Gordan-Noether, Permutti)

Let X = V (f ) ⊂ P4 be a reduced hypersurface, not a cone,
having vanishing Hessian. Then f is a Permutti polynomial of
type (2, 2, e).
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Let us recall a fundamental result that follows from an identity
proved by Gordan and Noether (see [GN] and [Lo, 2.7]).
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Corollary

Let X = V (f ) ⊂ PN be a hypersurface with vanishing hessian
and let notation be as above. Then

(i) for every p ∈ Pn \ Sing(X ) such that ΦX (p) ∈ Zreg we
have < p, (TΦX (p)Z )

∗ >⊆ Φ−1
X (ΦX (p));

(ii) for p ∈ PN general, the closure of the irreducible
component of Φ−1

X (ΦX (p)) passing through p is
< p, (TΦX (p)Z )

∗ > . In particular for p ∈ PN general

Φ−1
X (ΦX (p)) is a union of linear spaces of dimension equal

to codim(Z ) passing through (TΦX (p)Z )
∗.

(iii)
Z ∗ ⊆ Sing(X ). (1)
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Open problem: Classification

Classify irreducible hypersurfaces of degree
d ≥ 3,X = V (f ) ⊂ Pn with n ≥ 5 non cone and with
hessf = 0. Same classification problem for degree d = 3 and
n ≥ 7.
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Gordan-Noether theory

What we call Gordan-Noether theory is the following results.

1 Polar map and polar image.

2 Algebro-geometric description of hessf = 0.

3 Affirmative answer to Hesse claim for n ≤ 3.

4 Counter-examples for any d ≥ 3 and n ≥ 4.

5 Gordan-Noether identity.

6 Classification for n = 4.
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