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® This is a mini-course at master/beginning of PhD level.
@ Some classic results.
® Free boundary CMC (minimal) (hyper)surfaces in the ball.
© Gaps results.
@ Stability.
@ Index.
@® The Steklov Eigenvalue Problem.
@ Some characterization of the critical catenoid.
® Some open problems.

2/66



Plan

® Lecture 1
® (Brief) Motivation to study Differential Geometry.

3/66



Plan

® Lecture 1
® (Brief) Motivation to study Differential Geometry.
® Lecture 2

® Free boundary minimal or CMC surfaces. Gap results.

3/66



Plan

® Lecture 1

® (Brief) Motivation to study Differential Geometry.
® Lecture 2

® Free boundary minimal or CMC surfaces. Gap results.
© Lecture 3

® Free boundary CMC (hyper)surface in the ball. Stability.
O Lecture 4

® Some characterization of the critical catenoid. Index.

3/66



Lecture 1

4/66



Lecture 1

@ Introduction/Motivation

® Minimal and CMC surfaces

© Stability result
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Differential Geometry

Figure: Carl Friedrich Gauss Figure: Bernhard Riemann (1826 -
(1777-1855) 1866)

6/66



Curves

Theorem (Isoperimetric problem)

Let C be a simple and closed curve. Denote the area enclosed by A and L the
length of C'. Then

L? —47A >0,
with equality if, and only if, C is a circle.

——

/
/

Figure: Image by Wikipedia
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The Gauss application
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The Gaussian and Mean Curvatures

We can define the shape operator: dN), : T,S — T,,.S, which is self-adjoint
operator.
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The Gaussian and Mean Curvatures

We can define the shape operator: dN, : T,,S — T},S, which is self-adjoint
operator. Consider an orthonormal basis {e1, ez} on TS such that

deel = —k161
deeg = —kgez

® We call k1 and k2 as the principal curvature. We define:

® Gaussian curvature K = det(—dN) = kiks.

1
® Mean curvature H = 5(1:1 + k2).
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planes normal
of principal vector
curvatures =

Figure: Image by Wikipedia
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Figure: Image by Wikipedia
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Curvatures

Figure: Mean Curvature. Figure: Gaussian Curvature.
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Topology®

Figure: Image by Wikipedia.

1Some slides are courtesy by Professor Marcos Petriicio Cavalcante.
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Some classification of compact surface

Figure: @http://www.salsburg.com/geod/geodesicmath.pdf
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Compact surface

Consider a triangulation of S. We remember that the Euler characteristic of S is

given by
x(S)=V—-E+F,

where V', E, and F are respectively the numbers of vertices (corners), edges and
faces in the given triangulation.

Moreover,
X(S) =2 24(8).
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Figure: @Annenberg Learner

x(5) =2 —29(5).

® x(sphere) =2,
® x(torus) =0,
® x(bi — torus) = —2...
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Example of non-compact surface

- Pane
@ | ax-z=0 X
~ hom

@ A-(202 X

Figure: geogebra.org
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Figure: Image by Wikimedia
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Figure: Image by Wikimedia

18/66



Differential Geometry and Topology

Theorem (Gauss-Bonnet Theorem)
For a closed surface S:

/ KdA =2mx(S) = 2m(2 — 2g).
s

Figure: M. Spivak. A Comprehensive Introduction to Differential Geometry, Vol. 5, 3rd
Edition.
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Willmore Functional

In 1965, Willmore began the study about the functional defined on compact
surfaces M C R®.

W(M) = [ H?dM.

M

e |t is invariant under conformal transformations of R>.

2Marques, F. C.; Neves, A.; The Willmore Conjecture. Arxiv1409.7664. 2014.
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Willmore Functional

In 1965, Willmore began the study about the functional defined on compact
surfaces M C R®.

W(M) = [ H?dM.

M

e |t is invariant under conformal transformations of R>.

® Contributes to energy of cell membranes.

Theorem (Willmore)
The Willmore energy satisfies W(M)
W(M) > 4n,
holds the equality if and only if M is an embedded round sphere.

Proof.
Use the blackboard. O

Willmore showed that round spheres have the least possible Willmore energy
among all compact surfaces in three-space.?

2Marques, F. C.; Neves, A.; The Willmore Conjecture. Arxiv1409.7664. 2014.
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Willmore checked that W(M) > 27? in certain class of torus and the equality is
achieved by the torus of revolution whose generating circle has radius 1 and
center at distance from the axis of revolution:

(u,v) = (V2 + cos(u))cos(v), (V2 + cos(u)) sin(v), sin(u)) € R?

Figure: The torus with minimal Willmore energy, with major radius v/2 and minor radius
1. Image by Wikipedia.
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Conjecture (Willmore Conjecture - 1965)
3 Every compact surface M of genus one in R® must satisfy

W(M)= [ H?dM > 2x°
M

SItis proved by F. C. Marques and A. Neves in 2013 - Min-max theory and the Willmore
conjecture”. Annals of Mathematics. 179 (2014), no. 2, 683 - 782
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Minimal and Constant Mean Curvature Surfaces
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The variational method for surfaces

For each f with compact support in M C R?, we can define the normal variation
families

M(@t)={p+tf(p)N(p);p € M}, t € (—¢,e).

Figure: Image by www.ugr.es/ jperez
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Area functional

We define

A(t) = area(M(t)),

we can prove that

A'(0) = -2 y fHAM.

Thus,

A'(0) = 0 Vf € C§°(M) if and only if, H = 0.
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Minimal surfaces
We call that M is a minimal surface if H=0.
Remember the famous Plateau problem, which consist of finding a surface of

least area bounding any given Jordan curves (was solved for Euclidean spaces in
the 1930s independently by Douglas and Rado).

Figure: Plateau who experimented with soap films. www.math.hmc.edu/ jacobsen
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Examples of minimal surfaces
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Figure: geogebra.org

Plane
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Catenoid

Figure: Image by indiana.edu/ minimal
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Classification Theorem

Theorem
If M is a complete minimal surface of revolution, then M is a plane or a
catenoid.
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Helicoid

Figure: indiana.edu/minimal
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Classification Theorem

Theorem (Meeks-Rosenberg - 2005)

If M is a embedded, simply connected* minimal surface, then M is a plane or a
helicoid.

*If any simple closed curve can be shrunk to a point continuously in M.
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Costa Surface

Until its discovery, the plane, helicoid and the catenoid were believed to be the
only embedded minimal surfaces that could be formed by puncturing a compact
surface.
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Costa Surface
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Costa-Hoffman-Meeks surface
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Costa-Hoffman-Meeks surface
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Enneper surface with more symmetries

Figure: indiana.edu/minimal
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Enneper surface with more symmetries

Figure: indiana.edu/minimal
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Jorge-Meeks




Jorge-Meeks
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Riemann Surfaces
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More examples

Jobmarket Minimal Surfaces
s
Archive
Research Bloomington's Virtual Minimal Surface Museum
[

Eamzs
Gmehia
The Maze.
i
Galleﬂ
Links
————

Merchandise
L

marweber @indiana.edu

Figure: indiana.edu/minimal
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Examples of CMC surfaces
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Figure: www.maxpixel.net
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Cylinder

Figure: www.maxpixel.net
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Unduloid (Delaunay)

Figure: www.maxpixel.net
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Classification Theorem

Theorem (Jellet, 1853)
Any closed star-shaped CMC surface in R® is a round sphere.
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Classification Theorem

Theorem (Jellet, 1853)
Any closed star-shaped CMC surface in R® is a round sphere.

Theorem (Hopf, 1956)

Any closed immersed CMC topological 2-sphere in R? is a round sphere.

® Hopf conjetured that the condition of topological 2-sphere can be removed.

Theorem (Alexandrov, 1956)
If M is an embedded and closed CMC in R®, then M is a round sphere.

® In 1982, Hsiang et al. constructed a CMC topological 3-sphere in R*, which
is not round sphere.
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Some results about stability of CMC or minimal
surfaces
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Classic isoperimetric problem: Among all the surfaces in R® that bound a given
volume, which is the surface with the smallest area?
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Classic isoperimetric problem: Among all the surfaces in R® that bound a given
volume, which is the surface with the smallest area?

In 1884 Schwarz proved that is the sphere.

What are the compact surfaces without boundary with H=cte ?

Until then, the only known example was the sphere.

Conjecture (Hopf Conjecture)
The sphere is the only CMC compact surface immersed in R®.

® |n 1951, Hopf proved that the sphere is the only compact CMC surface of
genus 0.

® Between 1956 and 1962, Alexandrov proved that the sphere is the only

CMC, compact, embedded (does not have self-intersections) surface in R3.
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Stability

In 1984, L. Barbosa and M. do Carmo proved the following theorem:

Theorem (Barbosa, Do Carmo, 1984)

Let M™ be a compact oriented n-manifold and let x : M — R be an
immersion with non-zero constant mean curvature. Then, x is stable if and only
if e(M™) C R™*! is a round sphere S™ in R™ ™,

® |n 1986, Wente showed the existence of a compact surface immersed in R®
CMC that has the topology of a torus, thus providing a counterexample to
Hopf's conjecture.
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Stability

In 1984, L. Barbosa and M. do Carmo proved the following theorem:

Theorem (Barbosa, Do Carmo, 1984)
Let M™ be a compact oriented n-manifold and let x : M — R be an

immersion with non-zero constant mean curvature. Then, x is stable if and only
if e(M™) C R™*! is a round sphere S™ in R™ ™,

® |n 1986, Wente showed the existence of a compact surface immersed in R®
CMC that has the topology of a torus, thus providing a counterexample to
Hopf's conjecture.

® In 1983, for n > 2 Hsiang, Teng, Yu gave examples of compact
non-spherical CMC hypersurfaces embedded in R"!. These hypersurfaces
and Wente's example are not stable by the theorem of Barbosa and Do
Carmo.
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Critical points of the area function

If M is a minimal or CMC surface, then M is a critical point of the area function:

A'(0) = 0.

Saddle point

Local maxima

T T

N A

Local minima

©

(@)

Figure: http://math.libretexts.org
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Second variation of area

Theorem (Second variation of area)

A(0) = - /M FAF+1BEfdo = Q(f, ).

Where,

|BI> = kT + k3.
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Stability

A surface S C R? is called stable if
d2
EA(StNt:O >0,

for all normal variation with compact support ([, f = 0).

Figure: Image by www.ugr.es/ jperez
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Barbosa - Do Carmo Theorem
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Theorem (Barbosa, Do Carmo, 1984)

Let S? be a compact oriented surface and let  : S*> — R® be an immersion with

non-zero constant mean curvature. If x is stable, then x(S?) is a round sphere in
R?.
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Theorem (Barbosa, Do Carmo, 1984)

Let S? be a compact oriented surface and let  : S*> — R® be an immersion with
non-zero constant mean curvature. If x is stable, then x(S?) is a round sphere in
R?.

Theorem (Barbosa, Do Carmo, 1984)

Let M™ be a compact oriented n-manifold and let x : M — R"*1 be an
immersion with non-zero constant mean curvature. Then, x is stable if and only
if e(M™) C R™"! is a round sphere S™ in R™ ™,
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Lemma
® Let z: S — R® be a CMC immersion, then

A(N,z) = —2H — |B|*(N, z)
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Lemma
® Let z: S — R® be a CMC immersion, then

A(N,z) = —2H — |B|*(N, z)

® Let z: S — R3 be an immersion, then

Alz|* =4 +4H(N, z).

® Ifz: S — R? is a compact umbilical immersion, then S is the sphere.
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Proof.
Let f =1+ H(N,z), we have

Af:m

(integrating Alz|> = 4 + 4H (N, z)).
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/(2H + |B|*h) = 0, where h = (N, z).
S
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Proof.
Let f =1+ H(N,z), we have

Af:m

(integrating Alz|> = 4 + 4H (N, z)).
Now, since A(N,z) = —2H — |B|*(N, z) we obtain

/(2H+ |BI*h) = 0, where h = (N, z).
s

d2
Ao = = [ fasr+ 1B s

- / (1+ Hh)(—2H” — |B|?Hh + |B|*(1 + Hh))dS
S

O
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Proof.
Thus,

d? ‘
Ao = [ (217 - B)ds <o,
L 5

where we have used that |B|?> > 2H?. The equality holds if and only if S is
umbilical.

60/66



Proof.
Thus,
& 2 2
ﬁA(St”t:O = [ (2H" — |B|")dS <0,
t s
where we have used that |B|?> > 2H?. The equality holds if and only if S is
umbilical.

2
By hypothesys S is stable, then %A(St)h:o > 0.
3 It
This implies that, %A(St)h:o = 0. Thus, S is umbilical. By Lemma item 3,
we conclude that S is a sphere. O
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Free boundary CMC surface in the ball

Definition
Let z : ©2 — B2 be an isometric immersion, where ¥ is a smooth compact
surface with ¥ N B3 = 0.
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Free boundary CMC surface in the ball

Definition
Let z : ©2 — B2 be an isometric immersion, where ¥ is a smooth compact
surface with ¥ N OB = OX. We say that ¥ is a free boundary CMC surface if
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Free boundary CMC surface in the ball

Definition
Let z : ©% — B> be an isometric immersion, where 3 is a smooth compact
surface with ¥ N OB® = 0. We say that ¥ is a free boundary CMC surface if

* 32 has mean curvature vector H lenght constant.

o %2 jnstersects B> = S? in a right angle along its boundary OX.

Figure: Image by Barbosa, Cavalcante and Pereira.
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Examples

Figure: Spherical cap. Image by Barbosa, Cavalcante and Pereira.
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Examples

Trivial: equatorial disc

}

<1

{(z1,22,0) € BS; % + 23

D? =

&

\\\\Il"’l”

i)

Wi

0\

Figure: Image by Barbosa, Cavalcante and Pereira.
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Examples

Critical catenoid

%% = {(acosh(%) cos(f), acosh(%)sin(),t) € B}} where

0 € [0,27], —ako <t < ako and ko > 0 is the solution of cosh(kg) = % e
1

QG = —FF—
y/cosh? (ko)+k3

Figure: Image by Tayanara Santos.
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The first variation of volume of X

Consider 3* a compact k—dimensional immersed submanifold an n-dimensional
Riemannian manifold M with boundary 0¥ C OM.
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The first variation of volume of X

Consider 3* a compact k—dimensional immersed submanifold an n-dimensional
Riemannian manifold M with boundary 0¥ C OM.Let

P, N> M
be an one-parameter family of immersions with ®,(9X) C M, t € (—¢,¢€), with

Fo given by the inclusion X < M. The first variation of volume is:

d
3 colu(aa)| = - / (X, Hydps: + / (X, nYdpios,
b3 ox

where
® 5 is the outward with unit conormal vector of 9%.

® [ is the mean curvature vector of X in M.

P
e X = C[th|t:0 is the variation field.

. %|t:0|<1>t(M)\ — 0« H=0and X L OM along 5.
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The first variation of volume of ¥
Consider 3* a compact k—dimensional immersed submanifold an n-dimensional
Riemannian manifold M with boundary 0¥ C OM.Let
DX > M

be an one-parameter family of immersions with ®,(9X) C M, t € (—¢,¢€), with
Fo given by the inclusion X < M. The first variation of volume is:

d

—li=0|®¢(M)| = — [ (X, H)dps + | (X, n)dpos,

dt b %

where
® 5 is the outward with unit conormal vector of 9%.

® [ is the mean curvature vector of X in M.

P
e X = C[th|t:0 is the variation field.

. %|t:0|<1>t(M)\ — 0« H=0and X L OM along 5.

® The first variation formula shows that free boundary CMC surfaces are
critical points of the area functional for volume preserving variations of X,
whose 9% is free to move in OM.
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