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Mini-course

• This is a mini-course at master/beginning of PhD level.

1 Some classic results.
2 Free boundary CMC (minimal) (hyper)surfaces in the ball.
3 Gaps results.
4 Stability.
5 Index.
6 The Steklov Eigenvalue Problem.
7 Some characterization of the critical catenoid.
8 Some open problems.
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Plan

1 Lecture 1
• (Brief) Motivation to study Differential Geometry.

2 Lecture 2
• Free boundary minimal or CMC surfaces. Gap results.

3 Lecture 3
• Free boundary CMC (hyper)surface in the ball. Stability.

4 Lecture 4
• Some characterization of the critical catenoid. Index.
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Lecture 1
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Lecture 1

1 Introduction/Motivation

2 Minimal and CMC surfaces

3 Stability result

5 / 66



Differential Geometry

Figure: Carl Friedrich Gauss
(1777-1855)

Figure: Bernhard Riemann (1826 -
1866)
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Curves

Theorem (Isoperimetric problem)

Let C be a simple and closed curve. Denote the area enclosed by A and L the
length of C. Then

L2 − 4πA ≥ 0,

with equality if, and only if, C is a circle.

Figure: Image by Wikipedia

7 / 66



The Gauss application
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The Gaussian and Mean Curvatures

We can define the shape operator: dNp : TpS → TpS, which is self-adjoint
operator.

Consider an orthonormal basis {e1, e2} on TpS such that

dNpe1 = −k1e1

dNpe2 = −k2e2

• We call k1 and k2 as the principal curvature. We define:

• Gaussian curvature K = det(−dN) = k1k2.

• Mean curvature H =
1

2
(k1 + k2).
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Figure: Image by Wikipedia
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Figure: Image by Wikipedia

11 / 66



Curvatures

Figure: Mean Curvature. Figure: Gaussian Curvature.
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Topology1

Figure: Image by Wikipedia.

1Some slides are courtesy by Professor Marcos Petrúcio Cavalcante.
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Some classification of compact surface

Figure: @http://www.salsburg.com/geod/geodesicmath.pdf
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Compact surface

Consider a triangulation of S. We remember that the Euler characteristic of S is
given by

χ(S) = V − E + F,

where V , E, and F are respectively the numbers of vertices (corners), edges and
faces in the given triangulation.

Moreover,
χ(S) = 2− 2g(S).
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Figure: @Annenberg Learner

χ(S) = 2− 2g(S).

• χ(sphere) = 2,

• χ(torus) = 0,

• χ(bi− torus) = −2...
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Example of non-compact surface

Figure: geogebra.org
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Figure: Image by Wikimedia
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Figure: Image by Wikimedia
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Differential Geometry and Topology

Theorem (Gauss-Bonnet Theorem)

For a closed surface S: ∫
S

KdA = 2πχ(S) = 2π(2− 2g).

Figure: M. Spivak. A Comprehensive Introduction to Differential Geometry, Vol. 5, 3rd
Edition.
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Willmore Functional

In 1965, Willmore began the study about the functional defined on compact
surfaces M ⊂ R3.

W(M) =

∫
M

H2dM.

• It is invariant under conformal transformations of R3.

• Contributes to energy of cell membranes.

Theorem (Willmore)

The Willmore energy satisfies W(M)

W(M) ≥ 4π,

holds the equality if and only if M is an embedded round sphere.

Proof.
Use the blackboard.

Willmore showed that round spheres have the least possible Willmore energy
among all compact surfaces in three-space.2

2Marques, F. C.; Neves, A.; The Willmore Conjecture. Arxiv1409.7664. 2014.
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Willmore checked that W(M) ≥ 2π2 in certain class of torus and the equality is
achieved by the torus of revolution whose generating circle has radius 1 and
center at distance from the axis of revolution:

(u, v) 7→ (
√
2 + cos(u))cos(v), (

√
2 + cos(u)) sin(v), sin(u)) ∈ R3

Figure: The torus with minimal Willmore energy, with major radius
√
2 and minor radius

1. Image by Wikipedia.
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Conjecture (Willmore Conjecture - 1965)
3 Every compact surface M of genus one in R3 must satisfy

W(M) =

∫
M

H2dM ≥ 2π2

3It is proved by F. C. Marques and A. Neves in 2013 - Min-max theory and the Willmore
conjecture”. Annals of Mathematics. 179 (2014), no. 2, 683 - 782
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Minimal and Constant Mean Curvature Surfaces
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The variational method for surfaces

For each f with compact support in M ⊂ R3, we can define the normal variation
families

M(t) = {p+ tf(p)N(p); p ∈ M}, t ∈ (−ϵ, ϵ).

Figure: Image by www.ugr.es/ jperez
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Area functional

We define

A(t) = area(M(t)),

we can prove that

A′(0) = −2

∫
M

fHdM.

Thus,

A′(0) = 0 ∀f ∈ C∞
0 (M) if and only if, H = 0.

25 / 66



Minimal surfaces

We call that M is a minimal surface if H=0.

Remember the famous Plateau problem, which consist of finding a surface of
least area bounding any given Jordan curves (was solved for Euclidean spaces in
the 1930s independently by Douglas and Rado).

Figure: Plateau who experimented with soap films. www.math.hmc.edu/ jacobsen
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Examples of minimal surfaces
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Plane

Figure: geogebra.org
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Catenoid

Figure: Image by indiana.edu/ minimal
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Classification Theorem

Theorem
If M is a complete minimal surface of revolution, then M is a plane or a
catenoid.
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Helicoid

Figure: indiana.edu/minimal
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Classification Theorem

Theorem (Meeks-Rosenberg - 2005)

If M is a embedded, simply connected4 minimal surface, then M is a plane or a
helicoid.

4If any simple closed curve can be shrunk to a point continuously in M.
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Costa Surface

Until its discovery, the plane, helicoid and the catenoid were believed to be the
only embedded minimal surfaces that could be formed by puncturing a compact
surface.
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Costa Surface
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Costa-Hoffman-Meeks surface
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Costa-Hoffman-Meeks surface
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Enneper surface

Figure: indiana.edu/minimal
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Enneper surface with more symmetries

Figure: indiana.edu/minimal
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Enneper surface with more symmetries

Figure: indiana.edu/minimal
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Jorge-Meeks
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Jorge-Meeks
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Riemann Surfaces
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More examples

Figure: indiana.edu/minimal
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Examples of CMC surfaces
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Figure: www.maxpixel.net
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Cylinder

Figure: www.maxpixel.net
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Unduloid (Delaunay)

Figure: www.maxpixel.net
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Classification Theorem

Theorem (Jellet, 1853)

Any closed star-shaped CMC surface in R3 is a round sphere.

Theorem (Hopf, 1956)

Any closed immersed CMC topological 2-sphere in R3 is a round sphere.

• Hopf conjetured that the condition of topological 2-sphere can be removed.

Theorem (Alexandrov, 1956)

If M is an embedded and closed CMC in R3, then M is a round sphere.

• In 1982, Hsiang et al. constructed a CMC topological 3-sphere in R4, which
is not round sphere.

48 / 66



Classification Theorem

Theorem (Jellet, 1853)

Any closed star-shaped CMC surface in R3 is a round sphere.

Theorem (Hopf, 1956)

Any closed immersed CMC topological 2-sphere in R3 is a round sphere.

• Hopf conjetured that the condition of topological 2-sphere can be removed.

Theorem (Alexandrov, 1956)

If M is an embedded and closed CMC in R3, then M is a round sphere.

• In 1982, Hsiang et al. constructed a CMC topological 3-sphere in R4, which
is not round sphere.

48 / 66



Classification Theorem

Theorem (Jellet, 1853)

Any closed star-shaped CMC surface in R3 is a round sphere.

Theorem (Hopf, 1956)

Any closed immersed CMC topological 2-sphere in R3 is a round sphere.

• Hopf conjetured that the condition of topological 2-sphere can be removed.

Theorem (Alexandrov, 1956)

If M is an embedded and closed CMC in R3, then M is a round sphere.

• In 1982, Hsiang et al. constructed a CMC topological 3-sphere in R4, which
is not round sphere.

48 / 66



Some results about stability of CMC or minimal
surfaces
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Classic isoperimetric problem: Among all the surfaces in R3 that bound a given
volume, which is the surface with the smallest area?

In 1884 Schwarz proved that is the sphere.

What are the compact surfaces without boundary with H=cte ?

Until then, the only known example was the sphere.

Conjecture (Hopf Conjecture)

The sphere is the only CMC compact surface immersed in R3.

• In 1951, Hopf proved that the sphere is the only compact CMC surface of
genus 0.

• Between 1956 and 1962, Alexandrov proved that the sphere is the only
CMC, compact, embedded (does not have self-intersections) surface in R3.
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Stability

In 1984, L. Barbosa and M. do Carmo proved the following theorem:

Theorem (Barbosa, Do Carmo, 1984)

Let Mn be a compact oriented n-manifold and let x : M → Rn+1 be an
immersion with non-zero constant mean curvature. Then, x is stable if and only
if x(Mn) ⊂ Rn+1 is a round sphere Sn in Rn+1.

• In 1986, Wente showed the existence of a compact surface immersed in R3

CMC that has the topology of a torus, thus providing a counterexample to
Hopf’s conjecture.

• In 1983, for n > 2 Hsiang, Teng, Yu gave examples of compact
non-spherical CMC hypersurfaces embedded in Rn+1. These hypersurfaces
and Wente’s example are not stable by the theorem of Barbosa and Do
Carmo.
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Critical points of the area function

If M is a minimal or CMC surface, then M is a critical point of the area function:

A′(0) = 0.

Figure: http://math.libretexts.org
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Second variation of area

Theorem (Second variation of area)

A′′(0) = −
∫
M

f(∆f + |B|2f)dv =: Q(f, f).

Where,

|B|2 = k2
1 + k2

2.
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Stability

A surface S ⊂ R3 is called stable if

d2

dt2
A(St)|t=0 ≥ 0,

for all normal variation with compact support (
∫
S
f = 0).

Figure: Image by www.ugr.es/ jperez

55 / 66



Barbosa - Do Carmo Theorem
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Theorem (Barbosa, Do Carmo, 1984)

Let S2 be a compact oriented surface and let x : S2 → R3 be an immersion with
non-zero constant mean curvature. If x is stable, then x(S2) is a round sphere in
R3.

Theorem (Barbosa, Do Carmo, 1984)

Let Mn be a compact oriented n-manifold and let x : M → Rn+1 be an
immersion with non-zero constant mean curvature. Then, x is stable if and only
if x(Mn) ⊂ Rn+1 is a round sphere Sn in Rn+1.
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Lemma

1 Let x : S → R3 be a CMC immersion, then

∆⟨N, x⟩ = −2H − |B|2⟨N, x⟩

2 Let x : S → R3 be an immersion, then

∆|x|2 = 4 + 4H⟨N, x⟩.

3 If x : S → R3 is a compact umbilical immersion, then S is the sphere.
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Proof.
Let f = 1 +H⟨N, x⟩, we have ∫

S

f = 0,

(integrating ∆|x|2 = 4 + 4H⟨N, x⟩).

Now, since ∆⟨N, x⟩ = −2H − |B|2⟨N, x⟩ we obtain∫
S

(2H + |B|2h) = 0, where h = ⟨N, x⟩.

d2

dt2
A(St)|t=0 = −

∫
S

f(∆Sf + |B|2f)dS

= −
∫
S

(1 +Hh)(−2H2 − |B|2Hh+ |B|2(1 +Hh))dS
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Proof.
Thus,

d2

dt2
A(St)|t=0 =

∫
S

(2H2 − |B|2)dS ≤ 0,

where we have used that |B|2 ≥ 2H2. The equality holds if and only if S is
umbilical.

By hypothesys S is stable, then
d2

dt2
A(St)|t=0 ≥ 0.

This implies that,
d2

dt2
A(St)|t=0 = 0. Thus, S is umbilical. By Lemma item 3,

we conclude that S is a sphere.
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Free boundary CMC surface in the ball
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Free boundary CMC surface in the ball

Definition
Let x : Σ2 → B3 be an isometric immersion, where Σ is a smooth compact
surface with Σ ∩ ∂B3 = ∂Σ.

We say that Σ is a free boundary CMC surface if

• Σ2 has mean curvature vector H⃗ lenght constant.

• Σ2 instersects ∂B3 = S2 in a right angle along its boundary ∂Σ.

Figure: Image by Barbosa, Cavalcante and Pereira.
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Examples

Figure: Spherical cap. Image by Barbosa, Cavalcante and Pereira.
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Examples

Trivial: equatorial disc

D2 = {(x1, x2, 0) ∈ B3
1; x2

1 + x2
2 ≤ 1}

Figure: Image by Barbosa, Cavalcante and Pereira.
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Examples

Critical catenoid
Σ2 = {

(
a cosh( t

a
) cos(θ), a cosh( t

a
) sin(θ), t

)
∈ B3

1} where
θ ∈ [0, 2π],−ak0 ≤ t ≤ ak0 and k0 > 0 is the solution of cosh(k0) =

1
k0

e

a = 1√
cosh2(k0)+k2

0

Figure: Image by Tayanara Santos.
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The first variation of volume of Σ

Consider Σk a compact k−dimensional immersed submanifold an n-dimensional
Riemannian manifold M with boundary ∂Σ ⊂ ∂M.

Let

Φt : Σ → M

be an one-parameter family of immersions with Φt(∂Σ) ⊂ ∂M, t ∈ (−ϵ, ϵ), with
F0 given by the inclusion Σ ↪→ M. The first variation of volume is:

d

dt
|t=0|Φt(M)| = −

∫
Σ

⟨X,H⟩dµΣ +

∫
∂Σ

⟨X, η⟩dµ∂Σ,

where

• η is the outward with unit conormal vector of ∂Σ.

• H is the mean curvature vector of Σ in M.

• X =
dΦ

dt
|t=0 is the variation field.

• d

dt
|t=0|Φt(M)| = 0 ⇐⇒ H = 0 and Σ ⊥ ∂M along ∂Σ.

• The first variation formula shows that free boundary CMC surfaces are
critical points of the area functional for volume preserving variations of Σ,
whose ∂Σ is free to move in ∂M .
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