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Mini-course

• This is a mini-course at master/beginning of PhD level.
1 Free boundary CMC (minimal) (hyper)surfaces in the ball.
2 Gaps results.
3 Stability.
4 Index.
5 The Steklov Eigenvalue Problem.
6 Some characterization of the critical catenoid.
7 Some open problems.
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Plan

1 Lecture 1
• (Brief) Motivation to study Differential Geometry. (done)

2 Lecture 2
• Free boundary minimal or CMC (hyper)surfaces. Gap results. (done)

3 Lecture 3
• Free boundary CMC (hyper)surface in the ball. Stability. (done)

4 Lecture 4
• Some characterization of the critical catenoid. Index.
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3 Index of free boundary minimal hypersurface in Bn
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Free boundary minimal submanifolds

A proper minimal submanifold Σ of the unit ball Bn which is orthogonal to the
sphere at the boundary is called a free boundary submanifold.

• Σ ⊂ Rn minimal ⇐⇒∆Σxi = 0, for i = 1, ..., n
• Σ meets ∂Bn ⇐⇒ ∂xi

∂ν
= xi, for i = 1, ..., n{
∆Σxi = 0, on M

∂xi
∂ν

= 1xi, on ∂M

Theorem (Fraser-Schoen)

FBMH are characterized by condition that the coordinate functions are Steklov
eigenvalue 1, that is, ∆xi = 0 and ∇ηxi = xi, i = {1, · · · , n}

Some ideia.
Let xi : Σ → R i = 1, · · · , n be the coordiante functions.

p ∈ Σ 7→ xi = ⟨p, ei⟩.

• ν = x(position vector on ∂Σ) ⇒ xi = νi = ⟨ν, ei⟩ = ∂
∂ν

xi, ∀i = 1, · · · , n.
• ∇xi = ei − e⊤i
• ∆xi = Hi.
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The Steklov Eigenvalue Problem

(Mn, g) be a compact n-dimensional Riemannian. A function u on M is a
Steklov eigenfunction with eigenvalue σ if{

∆gu = 0, on M.
∂u
∂ν

= σu, on ∂M.

Steklov eigenvalues are eigenvalues of the Dirichlet-to-Neumann operator:

L : C∞(∂M) → C∞(∂M)

given by

Lu =
∂û

∂ν
,

where û is the harmonic extension of u to M{
∆gû = 0, on M.

û = u, on ∂M.

L is a self-adjoint operator which is non-negative definitive.
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σ0, σ1, · · · , σn eigenvalues and u0, u1, · · · , un eigenfunctions.{
∆gui = 0, on M

∂ui
∂ν

= σiui, on ∂M

σ0 = 0 < σ1 ≤ σ2 ≤ · · · ≤ σk ≤ · · · → ∞

σ1 = infu∈C1(∂M);
∫
∂M u=0

∫
M

|∇û|2da∫
∂M

u2ds

Question
1 How big can the first eigenvalue be?

1Fraser, Ailana, et al. Geometric Analysis. Springer International Publishing, 2020.
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Theorem (Weinstock-1954)

Let Ω be a simply connected plane domain. Then

σ1L(∂Ω) ≤ 2π,

where L(∂Ω) is the length of ∂Ω. Equality is achieved if and only if Ω is a disk.

• The disk uniquely maximizes σ1 among simply connected domains with the
same boundary length.

• After Weinstock proved this result for surface Σ simply connected with
boundary.
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Theorem (Fraser - Schoen - 2011)

Let (Σ, g) be a compact Riemannian surface with genus γ and k boundary
components. Then,

σ1L(∂M) ≤ 2(γ + k)π

Remark:

• If we consider γ = 0 and k = 1, we have the last result.

• The proof uses a result of Ahlfors with an improvement by Gabard to
construct proper holomorphic maps from Σ to the unit disk controlled
degree. After is used the ideia used by Szego and Weinstock to use
automorphism of the disk to balance the map and constructed test
functions.

Proof.
Use the black board.
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Theorem (Fraser-Schoen - 2011)

Let Σ be a compact surface of genus 0 with k boundary components, k ≥ 2. Let
σ1 be the first non-zero eingenvalue of the Dirichlet-to-Neumann operator of Σ
with metric g. Then,

σ1L(∂M) < 2kπ.

This shows that bound given before is not sharp.

11 / 41



Theorem (Fraser-Schoen - 2011)

Let Σ be a compact surface of genus 0 with k boundary components, k ≥ 2. Let
σ1 be the first non-zero eingenvalue of the Dirichlet-to-Neumann operator of Σ
with metric g. Then,

σ1L(∂M) < 2kπ.

This shows that bound given before is not sharp.

11 / 41



Theorem (Fraser-Schoen-2011)

Let Σ2 ⊂ Bn minimal, ∂Σ ̸= ∅, ∂Σ ⊂ ∂Bn and meeting ∂Bn orthogonally along
∂Σ. Then

2A(Σ) = L(∂Σ) ≥ 2π.

Corollary

The sharp isoperimetric inequality holds for free boundary minimal surfaces in
the ball

A(Σ) ≤ L2(∂Σ)

4π
.

Figure: Image by Wikipedia

Proof.
Use the blackboard.
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Existence of free boundary minimal sufaces in B3

Theorem (Fraser - Schoen - 2016)

For every k ≥ 1 there is an embedded free boundary minimal surface in B3 of
genus 0 with k boundary components. Moreover, these surfaces are embedded
by first Steklov eigenvalue.

Figure: Image by Mario B. Schulz.

Remark:

• Previously, the only know free boundary minimal surfaces in B3 were the
equatorial plane disk and the critical catenoid.

• This theorem and the connection between free boundary minimal surfaces in
a ball and the Steklov eigenvalue problem have raised the interest of finding
more examples of properly embedded minimal surfaces in the unit ball.
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Question
Which compact orientable surfaces with boundary can be realized as properly
embedded free boundary minimal surfaces in B3?

• Fraser-Schoen - 2016: γ = 0, k ≥ 1.

• Folha - Pacard - Zolotareva -2017: γ = 1 k ≫ .

• Kapouleas - Li: γ ≫, k = 3.

• Kapouleas - Wiygul: γ ≥ 0, k = 1.
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Question
Given a compact orientable surface with boundary in how many ways can one
realize it is a properly embedded free boundary minimal surfce in unit ball Bn?

A classical results of Nitsche shows that the only free boundary minimal disk in
the ball B3 is the equatorial plane disk.

Theorem (Nitsche-1985)

The equatorial disk is the only (up to rigid motions of B3) immersed free
boundary minimal disk in B3.

Figure: Image by Barbosa - Cavalcante - Pereira
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Remark:

• Fraser-Schoen proved any free boundary minimal disk on Bn is an equatorial
plane disk.

• This result is surprising by analogy with the case of minimal S2 in S3 is
totally geodesics, however there are many minimal immersions of S2 in Sn

for n ≥ 4 that are not totally geodesic.

• The critical catenoid is expected to be only embedded free boundary
annulus in B3.
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Conjecture (Fraser-Li - 2012)

The critical catenoid is the unique embedded free boundary minimal surface in
B3 that is homemorphic to an annulus.

Figure: Image by Tayanara Santos

Analogy of the Lawson conjecture on the uniqueness of the Clifford torus in S3

(proved by S. Brendle).

Figure: Image by Wikipedia
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Theorem (Fraser - Schoen - 2016)

Assume that Σ is a free boundary minimal annulus in Bn such that the
coordinate functions are first Steklov eigenvalues. Then n = 3 and Σ is the
critical catenoid.

Remark:

• This result characterizes the critical catenoid as the only free boundary
minimal annulus in Bn such that coordinate functions are first Steklov
eigenvalues, i.e., σ1(Σ) = 1.

• McGrath used this result to prove that the catenoid is the only embedded
free boundary annulus in B3 that is invariant under reflection through the
coordinates planes. This provideng further evidence the conjecture about
critical catenoid.
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Conjecture (Frazer - Li - 2012)

Let Σ be a compact properly embedded free boundary minimal hypersurface in
Bn. Then σ1(Σ) = 1.

Remark:

• Remember that for a free boundary minimal submanifold in the unit ball it
is always true that 1 is a Steklov eigenvalue and the coordinate are
correspoinding eigenfunctions. It is a subtle question to determine if 1 is the
first Steklov eigenvalue.

• Fraser - Li proved that σ1(Σ) ≥ 1/2.

• After Batista - Cunha showed that σ1(Σ) > 1/2.
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The two piece property in S3

Theorem (Ros, 1995)

Let Σ ⊂ S3 be an embedded closed minimal surface. Then for any equatorial
sphere S, either Σ = S, or S divides Σ in exactly two-components.

Conjecture (Yau, 1982)

Let Σ ⊂ S3 be an embedded closed minimal surface. Then the first non-zero
eigenvalue of ∆Σ is equal to 2.

Remark:
The result by Ros gives evidence to this conjecture.

φ : Σ → R; φ(x) = ⟨x, ν⟩ ⇒ ∆Σφ = 2φ

”Courant” ⇒ #{{φ > 0} ∪ {φ < 0}} ≤ 2

⇒ 2− piece.
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The two piece property in B3

Theorem (Lima, Menezes, 2019)

Let Σ ⊂ B3 be a compact embedded free boundary minimal surface. Then, for
any equatorial disk D, either M = D, or D divides M in exactly
two-components.

Conjecture (Fraser-Li, 2012)

Let M ⊂ B3 be a compact embedded free boundary minimal surface. Then the
first non-zero Steklov eigenvalue of M is equal to 1.

Remark:
The result by Lima - Menezes gives evidence to this conjecture.

φ : M → R; φ(x) = ⟨x, ν⟩ ⇒ ∆Mφ = 0 and
∂φ

∂ν
= φ

⇒ 2− piece.
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Lemma (Li)

An immersed free boundary minimal annulus in B3 has no umbilic points. Hence,
the second fundamental form is nowhere vanishing on the sphere.

• In the proof of Lawson’s conjecture the key point is to exploit the
embeddedness of minimal surface. It is unclear whether Brendle’s proof of
Lawson conjecture can be adapted to this setting to answer it.

Corollary (Kapouleas - Li)

The only embedded free boundary minimal surface in B3 with at least one
rotationally invariant (about the z−axis) boundary component on B3 are the
equatorial disk D and the critical catenoid K.
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Theorem (Fernández, Hauswirth, Mira - 2023)

There exists an infinite, countable family of non-rotationaly free boundary
minimal annuli immersed in B3.

This Theorem shows that the embeddedness assumption in the catenoid critical
conjecture cannot removed.
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The first variation of volume of Σ

Consider Σk a compact k−dimensional immersed submanifold an n-diemnsional
Riemannian manifold M with boundary ∂Σ ⊂ ∂M. Let

Φt : Σ → M

is an one-parameter family of immersions with Φt(∂Σ) ⊂ ∂M, t ∈ (−ϵ, ϵ), with
F0 given by the inclusion Σ ↪→ M. The first variation of volume is:

d

dt
|t=0|Φt(M)| = −

∫
Σ

⟨X,H⟩dµΣ +

∫
∂Σ

⟨X, η⟩dµ∂Σ,

where

• η is the outward with unit conormal vector of ∂Σ.

• H is the mean curvature vector of Σ in M.

• X =
dΦ

dt
|t=0 is the variation field.

• d

dt
|t=0|Φt(M)| = 0 ⇐⇒ H = 0 and Σ ⊥ ∂M along ∂Σ.
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The second variation of Σ

Suppose Σn−1 is a two-sided free boundary minimal hypersurfaces in M . Then,
the second variation of Σ, for normal variations X = φN, where N is an unit
normal field to Σ and φ ∈ C∞(Σ) is given by

d2

dt2
|t=0|Φt(Σ)| = Q(φ,φ),

Q(φ,φ) =

∫
Σ

(|∇φ|2 −RicM (N,N)φ2 − |A|2φ2)dµΣ +

∫
∂Σ

φ2⟨∇NN, η⟩dµ∂Σ.

= −
∫
Σ

φLφdµΣ +

∫
∂Σ

(
∂φ

∂η
− φh∂M (N,N)

)
φdµ∂Σ,

where L = ∆+Ric(N,N) + |A|2 is call the Jacobi operator.
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Remark:

• Any free boundary minimal hypersurface Σ in a manifold with nonnegative
Ricci curvature and convex boundary ∂M is unstable, because, if we take
φ = 1, then

Q(1, 1) = −
∫
Σ

(Ric(N,N) + |A|2))dµΣ −
∫
∂Σ

h∂M (N,N)dµ∂Σ < 0.

• Consider M = Bn and Σn−1 ⊂ Bn be a free boundary hypersurface. Then,

Q(φ,φ) =

∫
Σ

(
|∇φ|2 − |A|2φ2) dµΣ −

∫
∂Σ

φ2dµ∂Σ

= −
∫
Σ

φLφdµΣ +

∫
∂Σ

(
∂φ

∂η
− φ

)
φdµ∂Σ,

where L = ∆+ |A|2 is the Jacobi operator.
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Definition
The index of Σ is the maximal dimension a subespace of C∞(Σ) on which the
index form Q is negative definite, or equivalently, the number of negative
eigenvalues of the Jacobi operator with Robin boundary condition:{

Lφ+ λφ = 0, on M
∂φ
∂ν

= φ, on ∂M

• If Σ is an equatorial hyperplane in Bn, then ind(Σ) = 1.

• If Σ is a free boundary minimal submanifold in the ball Bn, then the
coordinate functions x1, · · · , xn are Steklov eigenfunctions with eigenvalue
1.
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• If Σ is not an equatorial hyperplane and φ is a Steklov eigenfunction of Σ
with eigenvalue σ1 ≤ 1,{

∆gφ = 0, on M
∂φ
∂ν

= σ1φ, on ∂M.

Then

Q(φ,φ) = −
∫
Σ

(∆φ+ |A|2φ)φdµΣ +

∫
∂Σ

(
∂φ

∂η
− φ

)
φdµ∂Σ,

= −
∫
Σ

|A|2φ2dµΣ + (σ1 − 1)

∫
∂Σ

φ2dµ∂Σ,

< 0.

28 / 41



• If Σn−1 is a free-boundary minimal hypersurface in the ball Bn that is not
an equatorial hyperplane, then

ind(Σ) ≥ n+ 1.

Proof.
Proof in the blackboard.
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Remark:

• In particular, any free boundary minimal surface in the B3, that is not an
equatorial plane disk has index at least 4.

• Devyver, Smith and Zhou, and Tran independently proved that the critical
catenoid has index 4.

• The Clifford torus is caracterized as the unique closed minimal surface S3 of
index 5 (Urbano - 1990). This index characterization plays a key role in the
recent celebrated proof of the Willmore conjecture by F. Marques and A.
Neves.

• It is conjectured that te critical catenoid is the unique free boundary
minimal surface in B3 of index 4.

Conjecture

If Σ is a free boundary minimal surface in B3 of index 4, then Σ is the critical
catenoid.
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Theorem (Fraser- Schoen)

Suppose Σ2 ⊂ B3 is a properly immersed FBMS with Morse index 4. Then the
first Steklov eigenvalue is 1.

Proof.
Blackboard.
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• In higher dimensions, the Clifford hypersurfaces in Sn have index n+ 2 and
are conjectured to be only closed minimal hypersurfaces in Sn of index
n+ 2. In contrast Smith et al. recently proved that the higher dimensional
free boundary minimal catenoids Σn−1 in Bn have suprisingly high index.

• En general, if Σn−1 is a free boundary minimal hypersurface in Bn of index
n+1, then the first Steklov eigenvalue σ1(Σ) = 1.

• If Σ2 is a free boundary minimal annulus in B3 of index 4, then Σ is a
critical catenoid.
In fact, ind(Σ) = 4 ⇒ σ1(Σ) = 1. (Σ is a FBMS annulus ; the coordiante
functions are first Steklov fucntions.) By Theorem of Fraser-Schoen Σ is
the critical catenoid.

32 / 41



• In higher dimensions, the Clifford hypersurfaces in Sn have index n+ 2 and
are conjectured to be only closed minimal hypersurfaces in Sn of index
n+ 2. In contrast Smith et al. recently proved that the higher dimensional
free boundary minimal catenoids Σn−1 in Bn have suprisingly high index.

• En general, if Σn−1 is a free boundary minimal hypersurface in Bn of index
n+1, then the first Steklov eigenvalue σ1(Σ) = 1.

• If Σ2 is a free boundary minimal annulus in B3 of index 4, then Σ is a
critical catenoid.
In fact, ind(Σ) = 4 ⇒ σ1(Σ) = 1. (Σ is a FBMS annulus ; the coordiante
functions are first Steklov fucntions.) By Theorem of Fraser-Schoen Σ is
the critical catenoid.

32 / 41



• In higher dimensions, the Clifford hypersurfaces in Sn have index n+ 2 and
are conjectured to be only closed minimal hypersurfaces in Sn of index
n+ 2. In contrast Smith et al. recently proved that the higher dimensional
free boundary minimal catenoids Σn−1 in Bn have suprisingly high index.

• En general, if Σn−1 is a free boundary minimal hypersurface in Bn of index
n+1, then the first Steklov eigenvalue σ1(Σ) = 1.

• If Σ2 is a free boundary minimal annulus in B3 of index 4, then Σ is a
critical catenoid.
In fact, ind(Σ) = 4 ⇒ σ1(Σ) = 1. (Σ is a FBMS annulus ; the coordiante
functions are first Steklov fucntions.) By Theorem of Fraser-Schoen Σ is
the critical catenoid.

32 / 41



Conjecture

If Σ is a free boundary minimal surface in B3 of index 4, then Σ is the critical
catenoid.

It suffices to prove that any free boundary minimal surface in B3 of index 4 is
homeormorphic to an annulus.
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Proposition (Tran - 2020)

Suppose Σ2 ⊂ B3 be a properly immersed free boundary minimal surface with
Morse index 4. Then u = ⟨X,N⟩ is positive every inside.

Corollary

Suppose Σ2 ⊂ B3 be an embedded free boundary minimal surface with Morse
index 4. Then Σ must be star-shapped. In particular, Σ has genus 0.

Corollary

Suppose Σ2 ⊂ B3 be an embedded free boundary minimal surface with Morse
index 4 and two boundary components. Then Σ must be congruent to the
critical catenoid.

Proof.

• By previous result Σ is star-shaped and has genus zero.

• Since Σ has two boundary component, then it must have the topology of an
annulus.

• ind(Σ) = 4, then its first Steklov eigenvalue is 1.

• Σ must be congruent to the critical catenoid.
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Theorem (Tran - 2020)

The Morse index of a free boundary minimal annulus is equal to 4 if and only if
it is the critical catenoid.

We remember that Sargent and Ambrozio et al has proved index estimates

Theorem (Sargent - 2016, Ambrozio, Carlotto, Sharp - 2017)

If Σ is a free boundary minimal surface in B3 of genus γ with k boundary
components, then

ind(Σ) ≥ 1

3
(2γ + k − 1)

Analogo of Savo’s index estimates for closed minimal hypersurfaces.
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Theorem (Chu - 2023)

There exists in the Euclidean unit 3−ball an embedded free boundary minimal
surface with genus 0 or 1, Morse index 4 or 5, and area in the range (π, 2π) that
is not be equatorial disk or critical catenoid.

Conjecture (Chu - 2023)

This surface has index 5.
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Plan

1 Lecture 1
• (Brief) Motivation to study Differential Geometry. (done)

2 Lecture 2
• Free boundary minimal or CMC surfaces. Gap results. (done)

3 Lecture 3
• Free boundary CMC (hyper)surface in the ball. Stability. (done)

4 Lecture 4
• Some characterization of the critical catenoid. (done)
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Mini-course

• This is a mini-course at master/beginning of PhD level.
1 Some classic results. ✓
2 Free boundary CMC (minimal) (hyper)surfaces in the ball. ✓
3 Gaps results. ✓
4 Stability. ✓
5 Index. ✓
6 The Steklov Eigenvalue Problem. ✓
7 Some characterization of the critical catenoid. ✓
8 Some open problems. ✓
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Thank you for your attention!
Grazie mille!, ¡Muchas gracias!, Merci beaucoup!, Muito obrigada!
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