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SECTION ONE

FRIST ORDER PAR

AL DIFFEREN

EQUATIONS

|AL

1.0 INTRODUCTION: First-order partial differential
equations (PDEs) are equations that involve first-order
partial derivatives of an unknown function with

respect to multiple variables.

A first-order partial derivative of a function

u(x,, X, ,---X,)

with respect to one of its variables, say is

x;, IS the

derivative of u while keeping all other variables

constant.



A general first-order PDE in two variables can be written in the
form:

F(x,y,u,au,aujzo 1.1
OX oY

Where:

X,y are the dependent variables
u=u(x,y) Isthe unknown function

ou . adl . . . .
—and — are the first order partial derivatives of u wrt x and y respectively

OX



Types of First-Order PDEs

First-order PDEs can be classified into various types, such as:

1. Linear First-Order PDEs:

A linear first-order PDE has the form:

alx, y]% + b(x, y}g—;‘ + c(z,y)u = d(z, y) 1.1.1

Here,a(z,y),b(z, y), ¢(z, v), and d(x, y) are given functions of the independent variables x

and y.

2. Quasi-Linear First-Order PDEs=:

A quasi-linear first-order PDE has the form:

In this form, the coefficients of the partial derivatives can depend on the unknown function e,

but not on its dernvatives.



3. Nonlinear First-Order PDEs:

A nonlinear first-order PDE has the form:

du  du
F (:ﬂ,y, T ﬂ_y) =0 1.1.3

Here, F'is a nonlinear function of its arguments, making the equation nonlinear with respect to

the unknown function and its derivatives.

1.1 DERIVATION OF PARTIAL DIFFERENTIAL EQUATIONS

Consider the family of surfaces
f(xy,u,ab)=0 114

where a and b are constants and u IS dependent on x and y (x, y are independent variables)



To derive an appropriate partial differential equation (PDE ) from (1.1.4) we eliminate the constants a and b

Differentiating (1.1. 4) wrt x and y we have the following equations :respectively:
of 81‘ ou

=0 1.15
OX 8u OX
of 81‘ ou _0 116
oy 8u oy
Eliminating the constants a and b from (1.1.4),(1.1.5) and (1.1.6) we obtain a general relation
F (X y,u,p,q)=0 1.1.7

Eqn (1.1.7) IS In general a first - order PDE If the number of constants to be eliminated is the same as that

of the independent variables and is of higher order if the number is greater than the number of the
Independent variables.



1.1.2 DERIVATION
Consider the family of surfaces

¢(f,g):0 1.1.8
where ¢ Is an arbitrary differentiable function of f and g that are in turn known differentiable functions
of some independent variable x and y with u also a differentiable function of x and y.
Differentiating ¢ wrt x and y we have
0¢ of a¢ of ou 8¢ 0g a¢ 09 ou _0
of ox 81‘ U OX 8g 0X 09 U X
0¢ of 8¢ of ou a¢ 0g a¢ 09 ou
of oy af NG 8g 0y 8g U oy

=0




¢[ ) 8¢[ . 99
of og \| ox au

o@p , 99 L 99
of ag 8y 8u
Ellmlnatlng and —¢ we thus have
of og
of of og og
ax ou'P 8x+8u'p_o
of  of g og |
.q +—=.q
oy au oy ou

Eqn(1.1.10) is equivalent to

P.p+Q.,q=
where
_o(f.9) 5_o(f.9) _2(f.9)
o(y,u)’ o(x,u) o(%x,y)

Eqn(1.1.12) is first-order differential equation.

p)-0
0)-e.

(1.1.10)

(1.1.11)

(1.1.12)

1.1.9



Example.
Eliminate a and b from the following families of surfaces to obtain a PDE.

(x—a)2+(y—b)2+u2:d2 (i)
Solution
Differentiating (i) partially wry x and y yeilds

2(x—a)+2u2—i:0,ie, (x—a)+up=0 (ii)
2(y_b)+2u%“20ie, (y—b)+ug=0 (il

Eliminate a and b from (i), (ii) and (iii) yields
| (—up)2 +(—uq)2 +u®=d”? (iv)
| (p?+q*+1)u® =d? (v)

Eqn(v) is first-order differential equation.



1.1.3 SOLUTION OF LANGRAGES LINEAR EQUATION

The general partial differential equation

P.p+Qg=R (1.1.13)
where P,Q, and R are functions of x, and y s refered to as the Lagranges Linear Equation.
Theorem 1.1
Given eqn(1.1.13) in which

f(x,y,u)=0
(. y.u) } (1.1.14)
g(x,y,u)=0
constitute the integral curves of the simultaneous ordinary differential equations (ODES)
dx_dy _d (1.1.15)

P Q R



Then the general solution of (1.1.13) is given as
F(f,9)=0 (L1.16)
where F is an arbitrary differentiable function. Further w(x, y,u) = ¢ is any solution of (1.1.13) and if first

-0rder derivatives of f, g and w are all continuous then the solution w-¢ =0 is contained in the general
solution of (L.L.16).

Proof

Differentiating the relationship (1.1.14) yields

ﬁdx:af dy:af du =0
OX oy ou

8—gdx | agldy | agdu=0
OX oy ou




dx dy du
— = 1.1.17
o(,9) (1) (1.9 S
o(y,u) 9(xu) o(xy)
Since (1.1.15) determines the integral curves of (1.1.16) then we have from (1.1.17)

P Q R
- — 1.1.18
(9) 29 (1) (1)
o(y,u) a(xu) a(xy)
Now considering any functional relation (1.1.16) when F is differentiable we have

6F(6f of j 6F(Gg 09 j |
+—.p |+ —+—.p|=0
of \ox ou og \ ox ou

oF [ of of oF( 09 0Og
+—.q |+ —+—.q (=0
of oy ou og\ oy ou

- (1.1.19)




Eliminating Z_If: and ok from the above yields

og
o(f,9) o(f,g) _8(f,g)
2 (yu) p+ 5 (x,0) q= 2(%,y) (1.1.20)

Comparing (1.1.13) and (1.1.20) we have that

P.p+Qg=R (1.1.21)
showing that (1.1.11) is a solution of (1.1.8). Thus, (1.1.11) is a general solution of (1.1.8).
Consider any solution w(x, y,u) =c.

Differentiating partially we have the following:

OW OW ]

OX i ou P=0

W AW - (1.1.22)
+—0q=0

oy ou )



It therefore follows that,

> (1.1.23)

S

OX oy ou
and in view of the relation (1.1.13) and (1.1.24) we have
6(f,g).aw+8(f,g).aw+8(f,g).awz
o(y,u) ox o(x,u) oy o(x,y) ox

0 (1.1.25)



’ o(f,0.m)

0(xy,ul
Since the partial derivatives of f, g and w are supposedly continuous, the vanishing of the Jacobian J In

[1.1.26) implies a functional relation of the form w= g 9. Hence, w-c = ( f,g)-c =G(1,g) , say

J= 2 112

Therefore, the solution w-¢ =0 IS contained in the general solution (1.1.11). This completes the proof of

the theorem.



1.2 GENERAL METHOD FOR THE SOLUTION OF FIRST-
ORDER PARTIAL DIFFERENTIAL EQUATIONS

THE GENERAL METHODS FOR SOLVING FIRST ORDER
PDES ARE:

1.CHARPIT’S METHOD

2. JACOBI’S METHOD



1.2.1 CHARPIT’S METHOD

Given the PDE
F(%Y,u,p,q)=0

1.2.)

Since U is a function of both x and y we thus have

du = pax + qdy
If we have another function

F(%Y,u,p,g,a) =0
it will be possible to evaluate p and

p=¢(X,y,u,a) andq:w(x, y,u,a).

122)

1.23]
from the two equations (1.2.1) and (1.2.2) in the form



Substituting these values into (1.2.2) renders it directly integrable or integrable using some weighting

function and the integral which is of the form f (X, y,u,a) = b will be a solution of the original PDE (1.2.1).
For this solution gives:

fdx+fdy+fdu=0
f, f > (1.2.4)

or dx+—;dy—du:0
Comparing (1.2.4) with (1.2.2) we have
f A
R4
f” > (1.2.5)
j%=Q=w

From f (x,y,u,a)=b treating u =u(x,y) we have

fo+f,-p=0, f,+f,-q=0| (1.2.6)



(12.6) implies

gl b
SR (12.7)
le, p=¢gandq=y

Since p=¢ and q =y satisfy (1.2.1) it thus implies that f (x, y,u,a) = b is a solution of (1.2.1). Since
this solution contains two arbitrary constants, it Is therefore a complete solution of (1.2.1). The problem
now therefore IS to determine the function (1.2.3) refered to a the auxiliary function. In doing this we

observe that the quantities u, p, g substituted into (1.2.1) (1.2.3) satisfy them identically. As a matter of
fact the partial derivatives of F and G with respect to u,x and y must vanish.



From eq. (1.2.1)

\

.

OoF : aF.piaFc’ip : aFaq:O
OX ou op oX oOg oXx
oG : GG.pI(’EGﬁp : 8G(’3q:o
OX ou op oXx Oq OX
oF _ aF.anFap | 6F6qzo“
oy ou op oy o oy
oG : 8G.q : oG op : 8G§q20
oy ou op oy o©q oy
Eliminating 2—5 in (1.2.8) we have

- 9(F.G) op o(F,G)

o(u, p) - OX o(q, p)

(1.2.8)

(1.2.9)

-0 (1.2.10)



Similarly, eliminating q in (1.2.9) we have

0(F.G) 0(F.G) oq O(F.G)
2(.0) +Q- (u.0) +5y. (p.a) =0 (1.2.11)

where
0(xy) oxoy oxdy
o(s,;t) dsot ot os
Recalling that

oq 0

(12.12)

we thus have from (1.2.11) and (1.2.12) that

———(q)zé ou|_ d'u _d'u _ 8(6uj:g(p):a_p
OX  OX OX\ oy ) oxoy oyox oy\ox) oy oy

0G
_|_

(aF 8Fj@G oF oF 10G oF oF |0G oF
__|_p. + __|_q. + _p.__q. +| —
OX ou)op \ oy ou ) oq op oq ) ou op

OX

|

_oOF

oG

aq

|

3

0 (1.2.14)



This 15 a linear differential equation of order 1 that must be satisfied by (1 44) S Inteqrals are Integrals

of the Lagranges auxiliary equations
b d o du
oF oF oF oF OF OF oF oF
TP +0|— P —-OI— T T
K oy ol oo op o

Eqns(1.2.15) are known as Charpits auxiliary equations. Any integral of (L.2.15) involving p or g or both

1215

s taken for the required second relation (1.2.3). In fact the simplest relation of these is taken as(1.2.3)

On obtaining (1.2.3) p and  are determined from (1.2.1)-(1.2.3) and the values substituted into (1.2.2)
which on Integration we obtain the required complete solution of the given differential equation.




1.2.2 JACOBI’S METHOD

In the last section we discussed the Charpit's method for solving a PDE involving two Independent
variables x, and x, (say). The present method (Jacobi's) is quite similar. It is expedient here to recall

the following very important theoerem in differential calculus:

Theorem 1.2
If the functions v/, (%, %,,%;), (j =1(1)3) posess continuous partial first derivatives in x; , j =1(1)3

then
w, dx +,dx, + y,dx, (1.2.16)
IS an exact differential equation Iff

Wo Vs _g o _O¥i_g i 0¥ _g 1217)

ox, ox,  0X O X, O,




Suppose we have a differential equation

fxy,u,p.q)=0 1218)
explicitly involving the Independent variable u. We shall prove that (1.2.18 can be transformed into another

(ifferential equation with & new dependent variable which does not explicitly occur and the number of

Independent variahles increased by unity in the process.
We shall rename the variables as follows:

X=X,y =X,U=X,
and introduce a new variable v =v(X, y,u)

- (1.2.19)

we now consider the relation
V(X y,u)=0 (1.2.20)



oV oV oV

By assumin = —, = , = . (1.2.20 Ields
y g p, o P, ox. P; ox. ( )Y
oV oV ou 0 \
Ox  ou ox
N, NN _gl (1.2.21)
oy Ou oy
e, pz—&and qz—&
p3 p3 J

Thus, v = 0 will be a solution to (1.2.18) i ff

f(xl,xz,x3, Py p2j=o (1.2.22)

Ps Ps



Egn(1.2.22) is an equation of the form

G, b, Pyi Py ) =0 (L2.3)
Clearly, this Is a PDE In three independent variables x,, X,, , that does not explicitly involve the depen-
dent variable v which ends the proof.

This method applies to PDE of the form (1.2.23) whose central idea Is to construct two more auxiliary
relations of the form

GZ(X1,X2,X3, P Py, p31a):0 (1.2.24)
Gy X1 %y, By ) = 12.25)
D=y, (% %,ab), (j=1(1)3) 1226)




and such that p,dx, + p,dx, + p,ax; becomes exact DE when p, =y/;.

Whenever such function G,, G, can be determined then there exists ¢(x,,X,,X,,a,b) such that
% _
O,

0p
— = 1.2.27
x, Vo (12.27)

9 _

OX,

\

W

Vs

thenwith p, = ¢, the DE p,dx, + p,dx, + p,0x; —dv =0 becomes d¢ — dv = 0 which then yields
d—V=A (1.2.28)



Observe that from (1.2.28) we get back (1.2.27)

0 0 0 W
p1:8_¢’p2:87¢’p3:57¢
n% % | (1.2.29)
e 0 —%— 0 —%— 0 _%_
| i x STRY x, Wy s x, Vs

Since by hypothesis p; =y constitute a solution (1.2.23),(1.2.24),(1.2.25) for p,, p,, p, we observe that
v=¢- Aisasolution of (1.2.23) which contains three arbitrary constants a,b,c therefore it is a complete
integral of (1.2.23).

If the original PDE is (1.2.18) we identify (1.2.22) and (1.2.23) so that v = ¢ - A s a solution of (1.2.22).

Hence, v=0 (¢ = A) is a solution of (1.2.18). This implies that ¢ = A gives an A parameter family of
complete integrals of (1.2.18) with a and b arbitrary constants.



1.2.2.1 DETERMINATION OF THE FUNCTIONS G, &G,

Spore e o G, &, esuh et we cansovedfor, p, p, fom{L.223) 1224 1223
| (1.2.26). Then ey ecoe GBS 1, e Wy, 0 e el nhates W1

s incpenenly.Hers,fom (L.224) nd (L.225) e e



oG,
28
oG,
26
oG,
OX,
oG,
OX,
oG,
OX4
oG,
OX,

op, 0%,

L 9G, o, 3G, op, 3G, op:
op; %
. G, dp, G, p, 3G, op,

op, 0%

op, OX
oG, op,

op, o

P 0%
N oG, op, N oG, op,

o, ox,
oG, op,

op, ox,

op; OX,
L 9G; 9p, | 0G5 Py

op, OX,

op, OX,

L G, p, 3G, ap, 3G, op,

o, ox,

o, ox.
oG, op,

op, ox,

Op; OX,

op, OX,

N oG, op, N 0G; 0p;
OP; OX,

op, OX,

\

=0
=0
:o\
=0

=0

=0

(1.2.30)

(1.2.31)

(1.2.32)



(1.2.32) we obtain

and Ps from
O,

OX,

Eliminating Zpl from (1.2.30),aloz from (1.2.31)
Xl

—
o
o
N
—i
N —
o o o
I |
ol s S| X S| X
Sl olc o]
— - \IQ/u)\”)
AN
s Ols ol
- o N — ~ ~
GZ S OS> O e
N i N o N | T ] N~
Qo Qe © [ ©
4 -+ -+
o N ~—1 o
~ s ol X S <
ES CO|ICT O
—| e~ |
— |~ o o o o
Ol Ol O|a
S s (5] =
CH RS Nl O N
i + +
— == =
—_ o
Nl O O s
- - — - -
S osS | X (| XX
G(/G\(/G\(
Y ESS C o |




Recall that

G,,G G,,G
2(6,6,)  2(G,.G,) 023
a(xk’pj) a(xj’pk)
Using (1.2.34) in (1.2.33) yields
5(62,63)+@(GZ,G3)+5(62,63)_'_5(62,63)(8% _ap3j+a(62’63)(5p3 _op
0%, p)  0(%p) O(XPs) O(PyPs)\ 0% 0%, ) O(Pyipy) (0% O,
+5(Gz,63)(8p1_6p2j20
o(py p,) (0%, X
e,
G,,G G,,G G,,G |
06,6, | 2CG,) 9 3)-N:—(GZ,GB)whereL:[apz—@p?’j,
0(P,ps) 0P 1) Yy 0% % ) |
_(8p3 _6p1] \ _(8@ _6p2] (6,6 )_G(Gz,Gs)+@(Gz,Gs)+G(GZ,GQ,)
_ N = (G,,G,)=
OX, OX, OX, OX, o(x,p) (%, p) (%, ps) |

(1.2.35)



Similar computation gives

3(6.6)  3(6.G)  4[G.G

L (6,6) (128
0(p,m)  olpl)  O(pp,
06.6)  0(G.G)  4(G.G

112 |4 ( 1 2)°M'|' 112 ‘N:_(Gl;Gz) (1237)
o(p.p)  o(pm) (PP,

Suppose noew that the solutions p, =y, make the expression p,dx, + p,dx, + p,d; = 0 and exact differ-

ential then = L =0,M =0.and N =0 identically. Then from Eqn(1.2.35),(1.2.36) and (1.2.37) we get that
(6,6,)=0, (6,,6,)=0and (G,6,)=0



Hence, Z = G, and Z =G, are two solutions of the PDE, (Z,G,)=0

o(Z,G) o(Z,G) 0(Z,G
6) 0fz6) i(26)

9(X1,P1 5(Xzipz) a(x3,p3) >(1.2.38)
L6 G136 azdG, GLdG azdG a6

0% 0py 0py O Ot 0p, p, 0% O, Opy 0P, X

e,

But we must have
(GZ,G3) =0 (1.2.39)
Observe that (1.79) IS a first order PDE in the independent variable X, p. (j = 1(1)3) with correspond-

Ing auxiliary equations



o dg de dp dp,  dp, o2
g, G, oG o6 G G G 0 ( O)

The coupled ODEs above are the Jacobi's auxiliary differential equations.

Furthermore on Jacobi’s Method

We show here that if - G, =0and G, =0 are two Independent integrals of the eqn (1.2.39) and are such

that (i) (G,,G,)=0 and (ii} p, p,, p, are olvable from (1.2.23),(1.2.24),(1.2:25) (1.226) then these
equations will render the expression p,dx, + p,d, + p,d, an exact differential



First, we note that Z = ¢ is an integral of (1.2.39) s0Z =G, and Z =G, are two solutions of (1.2.38). Thus,
we have (G,,G,)=04and (G,,G,)=0
Consequent on the hypothesis (G,,G, ) = 0 the equations in (1.2.35)-(L.2.37) give

(6,6, .L+a(ez,e3).M+a(ez,Gg).N:0

o(m,p)  o(pep)  O(ppy)

6, ) G’Gl.M+aG3’Gl.N:o > (12.41)
o(p, pg) o(pp)  a(pp,

0(6,6,) 26,6, 66, N

o(pp)  Apm) 0P,




This 1s & system of linear homogeneous e

Inwhich

Uations In the unknowns L, M and N with the coefficlent ceterminant

0(6,6,) 0(6,6,) (6,6,
o(0p) 0pn) 0(pp)
(6,6 (6,6 4(6,6,
0\PyPy) 0Py (PP,
0(6,6,) 0(6,6,) 4(6,6,
0(n,m) O(pp) O(p,

(1241



, 06,66 6, 6, i, 120)

Co(mpn) |0 Ay,

o, op, op,
= A= Adj] = J2
Recall that from our hypothesis p,, p,, p, are solvable from(1.2.35)-(1.2.37) = J # 0 ie, A 0. Hence, the

system (L.2.40) givesL=0, M =0, and N =0= p,dx + p,dx, + p,x, is an exact differential equation for

allp, =y, Here lie the success of the Jacobi’s method



SECTION TWO

2.0 PARTIAL DIFFERENTIAL EQUATIONS OF SECOND

AND HIGHER ORDERS
2.1 LINEAR EQUATIONS.

The most general linear mth - order Partial Differential Equations (PDES) 15 of the form

A\)—'|'A1 Az +B am—lu-l_B am—lu .
%y 1ay = Zay """ T
Fuvsnsin Ma—quNa—quCu_f(x y)
X 0y

inwhich A ,B,,M,N,C are constants or functions of x and y.

24



From equation (2.1), a constant coefficient PDE Is thus given as

. 0" U ra 0" U ‘a 0" U . aa 0"u
0 axm axm—lay Zaxm—ZayZ m aym
m-1 m-1 m-1
+ boa _Lljer1 8_2u S TR +bm_1a _llj
ox" ox" 0y oy"
T koa—u+kla—u +lu=f(xy)
ox "oy
inwhicha, i =0(1)m,b, j =0(1)m,k; k, and 1, are constants.
P r
Setting D" = 7 and D" = 7
OX" oy’

then (2.2) becomes:



(%,D" +aD"'D'+a,D"*D” +...+a,D" )+ (b,D"" +b,D" D'+ +...+b, D™ |u

\

+ (kD +k D)+ |u=f(xy)
or > (2.4)
F(D,D")u=f(xYy)

in which F (D, D') is a differential operator of order m.
The correspondind homogeneous differential equation (reduced equation) to (2.4) IS given by
F(D,D")u=0 (2.5)



Definition 2.1
The differential operator F (D, D’) 15 saidl to be reaucible If 1t can be cecomposed into factors of the

form (@D +4D'+7) 1

2.1 METF

0D OF 30

|

g

UT

ich a, 7 and v are all constants. Otherwise It IS Irrecucible.
ON

The solution of (2.4) 1S analogous to that of an m - order Orcinary Differential Equation (ODE) which

comprises of a complimentary function (CF) that contains m arbitrary constants and a particular integral

[P that contains no arbitrary constan. In this case the complimentary function isthe solution of (25

and the particular integral the solution of (24).



2.2.1 Complimentary Functions
In order o obtain the complimentary function corresponding to the solution of (2.5) We recall this theorem

from elementary caculus
Theorem 2.1

thediferential opertor F (D, ') the general slution of 25 e
F(D.DJu=(aD+fD'+7] u=0 26)
WARTe M 15 & POSIEIVe Integer IS given as



\
m

I :exp(—yx)melqﬁm (Bx-ay) a0

a r=1
and \

U= exp(—;yjiymlqﬁm (px-ay) p#0

In which the functions ¢, are sufficiently differentiable arbitrary functions.

J

Proof
We shall assume that o # 0 and prove by Induction.
For m =1 the equation becomes:

(27)



(aD+/>’D’+y)u 0le, aau +ﬂ0; +70=0
or 00— A + ﬁa—u =-7
ok 0y J
This 1s a first-order PDE with the corresponding Lagranges auxiliary equation as
(X dy L (ii)
o [ -

3
pix-ady=00r fx-ay=c (caconstant] (iii)



Also, we have

OI—u:—zdx

U a

e nu=-2x+k

e, o
7/x

Hence, a general solution is

'%x=¢uw—ay)

where ¢ Is a differentiable function. This proves the theorem for m=1.

ue =C

ue



We then assume the theorem to be true for some m = p and prove that it is true form = p +1.
le, we assume that

(aD+BD"+y) u=0 (vii)
Observe that
(OtD-I—,b’D’+7/)p+lu=O=(05D-I—,BD'-I—)/)pW (viii )
where w =(aD + D'+ y)u
But by our hypothesis
P
erxp(—ZXjZX”@ (Bx—ay) a#0 (ix)
o r=1
or

(04D+,8D’+;/)u=exp(—1szplxm‘l¢r (Bx—ay) a#0 (ix)
04 r=1



e,
ou ou

a&+ﬂ@:—7u+exp[—§xjix”¢r (Bx-ay) a#0 (x)

This 1s again a first-order linear partial differential equation with the corresponding Lagranges auxiliary
eguation given as

dx:dy: du (xi)
(04 ,B B _Z g r-1 _
yu+exp( ijx 4, (Bx-ay)
a r=1

In which again from the first two equalities we have

pdx—ady =0 or fx—ay =c (c aconstant) (xii)
Again, we also havefrom the first and third equalities

“ urexp (—7 xj Zp: X4, (c)

o

cx du (xiii



or

X O 04
e,
[ \ 1P
7/ U 7/ 7/ r-1
exp| — X |—+exp| —X|—U=—) X C
p\a jdx p(a ja a; ¢r()
ool Z )yl Z L e
— _exp(axju} —arzz;x #, ()
e,

(xiv)
()
(xvi)

(xvii)

(xviii)



The general solution Is therefore

uexp(zxj—ézplEr g, (c)+C =y(px-ay) (xix)

a ) ar
Inwhich i Is an arbitrary differentiable function. This general solution may also be written in the form

p+l
U= exp(—Z ijx”z//r (px-ay) xix}
u r=1
which Is the theorem form = p+1
This completes the Induction and hence the proof of the theorem.

We note that If the operator F (D, D') IS reducible it will be seen that
F(D,D')e“ = F(a, )¢ (28)



Therfore it follws that U =xplaok+ By) s sohtonof F (D, D' u=0 f

Fla,f)=0 29
I general, F(a ﬁ) (Ives different pawsofsoluﬂons( ﬂ) This way we obtain cifferent solutions
[ ) e, acorstats, Oy e e omtivtion ) x4 il

E
3 S0lution, Indegd, the most general solution I of this form



2.2.2 Particular Integrals
To determine the particular integral (P.1) of eqn(2.5)
le,
F(D,D')u=f(xY)
we shall employ the following two methods:

Method |
If the operator F (D, D’) IS a reducible operator then the Particular Integral is of the form
1 1 1
' ' 2 N ' f (X’ y)
(,D+BD"+y,) (a,D+4,D"+7,) (2, D+8,D"+7,)

m . - (2.10)




We start the Implimentation of the Inversion operation (2.10) from the last factor on the right as
1

DAy f(xy)=G(xY) say (2.11]
e,
(@,D+8,D"+7,)G(xy) =f(xy) (2.12)
= am%—iJrﬂm%: f-y G (2.13)
This Is Lagranges linear equation with the corresponding auxiliary equations
dx i} dy : 4G (214)

&, /Bm f_ymG



From the first two relation we obtain

dx—c_dy =0 |
Pt =ty | (215)
e, S X—a y=C J
Similarly, we have that
dG dx dG f-y.G
p— — =
f-yG a, dX a,
e,
gt o s (2.16)
X a, a
[7—m}dx m
This is a first order ODE with an integrating factor (1F) e/ =e"



. X foom
, G |=|—e" dx, 0 2.16
ie [e } ja e’ dx, a, # (2.16)

_ —X f X 1 —x — X

, G=e“ |—e"™ dx=—=e "™ |e" f(X,y)dx, 0 2.17
ie e jame X ame je (x,y)dx, a,, # (2.17)
Similarly,we have
. i
ie, G:ﬂ—e %n je“m f(xy)dy=w(xYy) say, B, =0 (2.18)

Observe that no arbitrary constant is introduced because Pl does not contain arbitrary constants.
It therefore follows that
1
f(Xy)=0(X, 2.19
gDy )y (219)
This way we operate from the remaining factors from right to the first on the left in turn to finally
obtain the Pl




Method II

Decomposing the operator - (Dl D’) Into partial fractions as
1 A B A . . A
F(D,D') («D+p4D'+%) (a,D+p,D"+7,) (¢,D+B,D"+7,)

m Aj
=) , (2.20)
jzl(ajD-l-ﬂjD +7/j)
we then perform the inverse operation term-wise to obtain the required Pl as demostrated in
the following steps:

A
(alD-I_ﬂlD'-I_)/l) f(X,Y)=G(x,y) (2'21)




with the corresponding auxiliary equation
dx dy dG

== (2.22)
o, B T-7G
From the first two relation we obtain
dx -, dy =0 \
fBl it \ (2.23)
e, BX-ay=C

Similarly, we have that

G dx _dG T-yG
f-yG o d& ¢




e,

RN LA (2.24)

This is a first order ODE with an integrating factor (IF) epr /i dxj = exp[ j
2

ie, exp(—x]G Alj—exp[ jdx a, #0 (2.25)
g e
e, G:Alexp[—ﬁxjjlexp£—x)dx
&, & g
:ﬁexp(——xjjexp[ )f(x, y)dx, o, #0 (2.26)
el &,

Similarly,we have

e G :%exp[__yjjexp( ‘ yj f(xy)dy=w(xy)say, #, 20  (227)

1 1



The expression for the P1 s therefore given nas

SRR RS T

a a o a, t, a,

.................... +2“mexp(—2”nxjjexp(2xj f(xy)dx, o #0 2.28)
or

o o B .

.................... +2r”nexp[—;:xj j exp[;:x] f(xy)d B #0 2.28)



e,

f(xy)dx,a; #0

f(xy)dx, g, #0

’

(2.29)



2.2.3 Some Special Cases.

We recall that the particular integral of (2.6) is given as

1

Uy (X’ Y) -

integration D‘l,(D’)_1 nwith res

F(D,D')
This I determined almost the same way as that of ODEs,
The Inverse operator may be expanded using the Binomial Theorem and thereafter performing the

f(xy)

Dect to X and y res

(230)

nectively. The PI corresponding to certain special

functions may be obtained by mt

ch shorter methoc

than the general method.

In this section we note the following pertinent rules:



Case | :

1 ax-+hy 1 ax+hy :
: = . dedF(a,b)=0
FD.D)°  F(ab) T (ab)>
Case |l :
1 ax+by ax+hy 1 : .
. ’ = ' ] ] ] bt .
F(D,D') e ¢(X y) ¥ F(D+a,D’+b) ¢(X y) ¢(X y) IS aroitrary
Case Il :

If F(a,b)=0in Case I, then the PI is obtained as follow:
1 eax+by _ 1

_ eax+by 1 _ eax+by 1

F(D,D) F(D,D) F(D+a,D'+b)
and then apply case II.




Case IV :
1
F(D,D')
1

_ |:(—az,—ab,—bz)'COS(aXery)’ provided F (a’,ab, b’} # 0

1
F(DZ,DD’,D’Z)

Cos(ax+hy)=

.Cos(ax+hy)

If F (a2 ab, bz) =0 this case fails. We then compute the PI by considering the real and imaginary parts of

1 i(ax-+hy)

F(DZ,DD’,D’Z)e

Case V

1 m,,n -1

F(D,D’)'X y" =|F(D,D')| x"y"




In this case we apply the Binomial theorem to the inverse operator and then operate on Xy
These methoas are evidently shorter ways of obtaining the respective PIS.



SECTION THREE
3.1 PARTIAL DIFFERENTIAL EQUATIONS OF THE CAUCHY-EULER TYPE

Equations of the of the Cuachy-Euler type are the PDES of the form
F(XD,yD"Ju=f(x,y) 31)
where F 15 a polynomial in the indeterminate xD and yD'

In this case we make the following transformations:

0 0
s=Inx t=Iny $=—and p=— 3.2
/ 0S ¢ ot ( )



t i therefore immediate from (3.2) that
(XDJu=4, (xzDz)u =§(9-1)u and (x3D3)u =9(9-1)(9-2)u |
(yD')u=gu, (y*D* u=g(¢-Luand (y'D°Ju =4(¢-1)(¢-2

Substituting (3.3) Into (3.1) transforms It into lingar equation with constant coefficients with 3 and ¢ as

33

the new Independent variables.
Examples.
Transform the following PDE to linear form

D" -4xyDD'+4y°D" +4yD'+ xD)u =Xy, (i)



Observe that the given PDE Is of Cauchy-Euler type. We then define the following transformation:

0 0 .
S=Inx t=Iny, 3=—and g=— I
/ 05 ¢ of ()

Using (ii) in (i) we obtair
9(9-1)-499+49(¢-1)+4g+ 9 Ju=e"e =¢™",
e (9 -49g+4¢" u=e™". (i
= 9- 2¢) " (iv)

This 1S a linear DE with constant coefficients.



Example

10°u 10ou 10d°u 1 au
x2 ox>  x®ox  yZoy: yioy
X y° .
Suppose S = and t = (ii)
Then
8_u:auas 6uo ou 1du
OX 0SS OX oS s X ox
’u oou 1o(10) 18 10
os? s as_xax(x@xj_x2 ox?  x3 ox
1 82 106 &
x2 ox2 X ox o5

;

(iii)

(1)



Similarly,
1 0° 1 0 o

= 1\
y2 ayz y3 ay atz ( )
Thus the given PDE Is transformed into
o°u  o°u .
7= O (92 —¢*)u=0 (V)
where ng and ¢=Q
oS ot

— (9—¢)(9+¢):O



3.2 SECOND-ORDER PDE WITH VARIABLE COEFFICIENTS.

Definition,

A partial differential equation with variable coefficients Is that which contains atleast one of the partial
derivative of the second order and none higher than the second. This is simplified if we consider the case
of two Independent variables.

We shall define the following:

o o A 8[8uj\
oy 8x 8x8y 8y0x oy \ O

P a(au) 0, 82u:8(6uj:8q
oy aley) o ayley) oy




0ur ciscussion shall b imted o that of the variable coefficlents which are of fist degreg n. ¢
e RreSssTt=V 39
nwichR,S,T and V' are m general functions of Rx, ,p,0 and

This will e fhusrated by examples solvanle by Inspection

Examle
L Solves=2t+2y



Solution
The PDE is given by

Xy =2X+2Y ()
Integrating wrt y we have

2—2:ny+ y* +h(x) (ii)
Finally, integrating wrt x yields

u(x,y):x2y+xy2+jh(x)dx+g(y) (iii)

ie, u(x,y)=x*y+xy*+¢(x)+g(y) (iv)



We note that (3.5) 15 8 Second - ordler quasilingar PDE. It 1s linear If It can be put In the form

Rr+Ss+Tt+Pp+Uu =V 36)
inwhichR,S,T,P,U and V are functions of x andy.

ST TG TR TR
(@) —+x—-—-—=¢"Sinu
ooy X oy
ou du U A
b) =+ X=Xy —U=X+Y
o oy X0y

Observe that (a) is a second order quasilinear PDE while (b) is a linear second-order PDE




3.3 MONGE'S METHOD.
Inthis section we shall discuss the Monge's general method of solving

Rr+Ss+Tt =V 37)

nwhichR,S,T and V are functions of ¥, y,u, p and g with r,s and t retaining their usus! definitions.
€,
2 2 2
r:a—lj,s:a—uandt:&—tJ 38
X" OXoY 0

From (3.7) we recall that



dp = P+ P dy = rx + sdy
OX oy

dg = D ax+ Yy = sdx -+ tdy
OX oy

From (3.9) we have

- dp — sdy and t = dq — sdx

ax dy
Substituting (3.11) into (3.7) yields

R(dp—sdijrSSJrT[dq—sdx

ax dy

]:v

39)

(3.10)

(3.11)

(3.12)



o Rdpdy - Rs(dy) + Sy + Tdock~Ts(d) ~Vdudy =0
e, (Rdpdy Vo +Tdgd - Ro{ ) - Ssy +T( 8| -

e, ( Rdpdy - Vidxdy + Tdeclx) - s(R(dy)2 - Saxdy + T (dx)z) =0 (313
If there exists a relation between x, y,u, p and g such that the terms in parenthesis in (3.11) vanish indep
endently then it satisfies both (3.13) and (3.7). It therefore follows that
R(dy)2 - Sxdy +T (dx)2 =0 3.14)
Rdpdy - Vdxdy + Tdgdx =0 3.15)
These are refered to as the Monge's subsidiary equations.



We now assume that (3.14) 1S resolvable nto factors thus;

dy-mde=0
o | (3.16)

y-mjdx=0
The firtequation in 3.16) combined with (3.03) and withdu = p-+ oy will ek aninegrel o the

form g, =a and h, =b Inwhicha and b are aroitrary constants. Then a relation of the type

=10 317)

Where £ 15 arbitrary will g an integral. This 15 called an Intermediate (first) Integral



Similarly, second equation in (3.16) combined with (3.13) will give another intermediate integral of the

type
h=hlg 31
Inwhich f, Is also arbitrary.
Solving (3.17) a0 (3.18) We ontain p and o n terms of x,y and U, These values of p and q are then
substituted In du = pax -+ qcy which on Integration yields the required solution.
We however here note that If (3.16a) 5 perfect square It 15 convinient In Some cases o compute only
ng Intermediate Integral and Inteqrate 1t with the help of Lagrange's method to get the complete solution



3.4 GENERAL FORM OF SECOND-ORDER PDE WITH VARIABLE COEFFICIENTS ADMITTING
AFIRST INTEGRAL AND ITS SOLUTIONS,
Insection 3.3 we saw that a relation of the form

h=1(g) 319
Inwhich ¢ and hare differentiable functions of x,y,u, pand q and £ an arbitrary cifferentiable function
5 Called a firs (intermediate)integra\ 0f & second-order PDE 1f the latter IS otained by eliminting f

and ' from (3.19) together with the relation obtaingd by differentiating (3.19) nartially wrt x and .



We now discuss the general form of second-order PDE if admitting first integral and its method of solu-
tion due to Monge.

Differentiating (3.19) partially wrt x and y yields

athah.era_h.Ha_h.s:f’(g) agJr@g-era—g-rJra—g-s 3.20)
ox ou - op O ox ou - op O

h oh  oh  oh ()[ag+ag oy g j 21

+—-0+—-s+—t=1'(qg O+—-S+—1
oy ou - op O oy ou - op g

Eliminating f'(g) between (3.20) and (3.21) yields
Rr+S5+Tt+U 1t =57 =V (3.22)



Wwhere

pU=—— (323

yu) 0(u,X |

Hence, (3.22) 1S the most general form of second-order PDE that possesses  first (intermediate) integral.



We thus proceed as In Monge's method for solving equations of this kind by determining the first integral.
Recall that

p, o
dp =—dx+—ay = rax + sd 3.24
p=- ayy y 3.24)
and
VG
dg =—dx+—ay = sdx +1d 3.25
4=~ ayy y 3.25)
g,
[ = dp - ay and t = g - 50X (3.26)

(X aly



Putting (3.26) into (3.22) we have

_ _ofy ) _ _
R(dp dej+Ss+T dg - sdlx +U(dp sdy] dg - sdlx Ust oy
(X ay (X (y

3
Rdpdy - Rs(dy)2 + Sstdy + T —Ts(dx)2 £ (dpdq -stpd - sdody + szdxdy) - Vkdy =0
3

(dedy+qudx+Udpdq—dedy)—s(R(dy)2+Udpdx+qudy—dedy+T(dx)z):o 41)



Monge's subsidiary equations are:

M = Rdpdy + Tdgax +Udpdg - Vdxdy =0

N =R(dy) +Udpx+Udggy - Schay +T (d)" =0
In view of the presence of the terms Udpax and Udgay N cannot be factorized . We may however try
to factorize

> (3.27b)

N+AN =0 (3.28)
where A Is an undetermined multiplier.
3

R(dy)2 +Udpdx +Udgdy - Sxdy + T (dx)2 + A(Rdpdy + Tdgdx +Udpdg - Vaxdy)=0  (3.29)



Su

dy) +Ud

0pose this

ndx +Udady — Sdxdy +T (dx)2 +A(Rdpdy +Tdgdx +Udpdg - Vdxdy)=0 (3.29)

nas factors

(Rdy +mTdx + xUdp) + i[dy n %dx n &dq) =0 (330)
K

Comparing (3.29) and (3.30) we obtain

%erT =—(S+AV) 331)
- (332)

Ri_
K

U (333)



Eliminating  and m fiom (3.31) through (3.33) we observe tht / satsfesthe quadratc equation
FOVART)+ AUS+U%=0 (334)

. . RA,
Recall that 3.34) hes in general two roots A, 4, Puting 4 = 4, and k== % n (330) we have

Uty 4T0c AU Ut Rigy + U =0~ (335
Similarly, replacing 4 with 4, we have
(Udy+ A, T+ 4,Udp U+ Ridy + AUdg <0 (335)



Ml
U

W o o o il f e form g, =&, &m0 =1y bysong (e air 4=, 400 k=M=

ad eyl e e, =3, andh, =0, obanedfomohin e s 4, Here eget

ol of e et = o, nd, =, whee, ad, ey, These o

Geermin p a3 unctions of . nu tereafer SUBSAUANG ot o = Ok -+ WhCh When infe
(e v te complete soluton,



In Implementing this procedure we note the following:
1 If (3.34) has double roots, it is only possible to obtain one integral of the form h = f,( ;) which can

be obtained from either g, =a, or b, =, to give the values of p and  to render du = pdx+qdy Integ-
rable.

2 Since 4, = 4, we get a more general solution by taking liner relation between g,and hy In the form
0, =mh,+n and integrate by Lagrange's method.

3 Ifthefirstintegral h =, (g, ) andh, = f, (g, ) and unsolvable for p and q then one of the irst integ-
als = f; ,) may be combined with g, =4, orh, =b, to determine the values of p and g and then

Integrating du = pax + qay to obtain the complete solution (integral).



SECTION FOUR
4.1 BOUNDARY VALUE PROBLEMS

41 BOUNDARY CONDITIONS AND BOUNDARY VALUE PROBLEMS.
f & second-0rder differential equation

YU ) =0 41

0 he Solved within & specified region R of space In which the values of the dependent variables u are
specified at the houndary oR then the resulting problem 15 refered! to as & boundary value problem, Thesg

houndaries need not enclose  finite volume, In this case ong of the boundaries may be at Infinity.



APDE inwhich one of the Indepenent varianles Is time, the value of the dependent variable and often
ts time derivatives at some Instant of time, t =0 (say) may be given. These type of condlitions are calleg

Initial conaitions, Hence, the term boundary and Initial conations will be used as appropriate.
We shall concer ourselves here primarily with two ntypes of boundary conditions that arise frequently in
the description of physical phenomena and which we encounter frequently In many applications:

(a) Dirichlet Conditions; where the ciepencent variable U Is specified at each pontof a houndary In a reg-

jon. For example at the end of a rectanqular region.
R:a<x<h ey



(b) Cauchy Condition; if one of the independent variables is time (t) and the values of both u and a_u are

ot
specified on the boundary at time t = O(at some Inital time) then this condtion I refered to as cauchy

type.

In applied Mathematics, Physics and Engineering, PDEs generally arise from the mathematical formulat-
jon of the real - life physical problems. Often, houndary conditions are Imposed on the depencent varia-
bles and certain of Its dervatives. The process of determining a PDE subject to the Imposed boundary

condition Is Solving a boundary value proble (BVP). [t 15 Initial value problem If initial conditions are
imposed on the differential equation.



3.2 METHOD OF SEPERATION OF VARIABLE.

This 1S perhaphs the oldest and commonest method of solving a partial differential equation.
Given the unknown function

U= U, X, X, Xy X X (4-2)
we shall on the onset make some fundamental assumptions thus:
that

In which

Xk:Xk(Xk) (4-4)
a function of a single independent variable.



O sustitting (43 into (4-1) and simplifing we oten vy ifeentalequetions( ODEs) in e

Unknown functions X, (k - l(l)m). Some ofthe houndary conditons ofthe riginal PDE willgive rise

0 conmesponding houncary conition to be saisied by some ofth functons X, (k - l(l)m). We wil

herefore have to Solve m uncoupled oraimary aifferential equations some of which may be BVP or IVPs,

These par

Consider

(U

i

ar solutior

ePDEIr

5K,
tWo |

\0e

B ihen

O

(ler

80 10 COnst

tvaria

Rr+35+Tt+Pp+Qq+Uu=V

tute the most ger

esx andy Intr

eral $0

e formr

Ution of the ariqinal PDE

%



Suppose the solution of (4-5) s given s

u=X(x)-Y(y) (4-6)
Inwhich X and Y are functions of x and y respectively and u Is the dependent variable. Substituting
4-6) into (4-5) and simplifying we obtain

1 1
Liopx- o)) e
where f (D) and ¢(D') are quadratic functions of D = aﬁ and D' = % respectively. We observe that
X

the Ihs of (4 . 7) 15 a function of x only while the rhs is a function of y only and the two can not be equal

except each Is equal to a constant - /1(say).



VWe thus have
(D)X (1) =X

oo Y[yl
The solution of (4-5) therefore reduces to the solution of (4-8)

The usefulness of the solutions of PDE I quite limited because of the difficulty in choosing the approp-
riate arbitrary functions that will satisfy the imposed boundary conditions. This Is however eliminated for

48

some class of PDES (Iinear) Dy certain techniques one of which 1 hased on the principle of superposit-
jon of solutions. This states tha



"It each of the m functions z, (k - 1(1)m) satisfies a linear PDE then an arbitrary linear compination
L=0L + 0L+ 0L+ 0L 4t 0L + 0= ) 0 49)
g
Where o, (k =11 m)are constants also satisfies the differential equation”. The combination of the method

0f seperation of variables and the superposition of solution IS ustially known as Fourier method.



Example
1 Solve by the method of seperation of variables the differential equation

a?—25+a—y =0
Solution
Setting u(X,y)=X(x)-Y(y)=0 (i)
Into the differential equation we have
X" Y =2X""Y+YX =0 (ii)
Dividing through by u(x, y) by vitue of (i) yields
X 22 o (iii)

X X Y



e,

1 Y' .
—(X"=-2X")=——

(X-2K) =1 i

\We observe here that the Ihs and rhs of (iv) are functions of x and y respectively. For this equation to be

valid each side must be independently equal to a constant l(say). The implication of this yields the follo-

wing uncoupled ordinary differential equation:

X"=2X"=AX =0
, (V)
Y'+AY =0 J
e,
D°-2D-A}X =0
) > (Vi)
D'+A)Y =0 |




The solution of the ordinary differential equations In (vi)above are gIven as

X(X)= Aexp(1+\/1+7)x+ Bexp(l—\/lT/l)x\

and Y(y)=Cexp(-1y) f i

By virtue of (i) and (vii) therefore we have

U(%,y)= (Dexp(1+ \/1+7)x+ Eexp(l—\/1+7)x)exp(—/1y)

where D = AC and E = BC are arbitrary constants of integration.



2 Determine the solution to the 3— D wave equation
C°VeU = @
ot
by method of seperation of variables.
Solution.
Assuming the unknown function t Is seperable and of the form
U(X,y,2,t)=X(x)-Y(y)-Z(z)-T(t)#0
then the partial differential equation yields
¢ (X'YZT +Y'XZT +ZXYT)=T XYZ



le,

C (X” " Z”):f (iii

XYZ

+—+—= ——
X Y Z c
This equation Is true only If each of the component parts is equal to a constant.

X” Yll Z” 1-'—' -
- T (iv)

le,

T
SR LR u



This yields the following uncoupled ordinary differential equations:
X"+ p2X =0 \
Y"+qg°Y =0
Z"+r°Z =0
T +¢%s’T =0
with solutions
X (x)= A, Cos px + B, Sin px
Y, (y)=C, Cosqy + D, Sinqy
Z, (z)=

T, (t) = P, Cos(cs)t+Q, Sin(cs)t

S

- (Vi)

- (vii)

E Cosrz+ F, Sinrz




Since the parameters p, , r and s are dependent by virture of (iv) we may express T (t) as

T (t)=C,, Cos(\/p2 +O 41 )t +Q, Sin(\/p2 L0 41 )t v
Hence by vitue of (i) and (vii) we thus have that

by (080 =X, ()0, 92 (2T, 1 i
The most general solution Is thus given as

W o ®©

b (000= 5 T (o5t i

p=1 =L r=l

in which the function u, (x,y,t,t) are as defined in (vii) and (ix).



4,3 SOLUTION OF 3-D LAPLACE's EQUATION IN CURVILINEAR COORDINATE SYSTEM.
(1) Cylindrical; (r,9,z)

ol

18u Al 82

Viu=—+- o)

or’

[ or r092 o1’

(IT) Spherical; (r,9,)

0l

Zau 1 0 Co&&u Al

Viu=—+- } =0

or’

1 this section we Wi

(

rical coordinate fol

AT AT r°Sin’ 9 0’
1 solve the problem for the shperical coordinate system. The solution for the cylin-
OWs the same procedure.



The corresponding differential equation IS given by
0L 20 16y Cotdou 1 o

= |

v o 09+r28in298¢2 (
Assume the unknown function u Is seperable In the form

u(r,9,4)=R(r)-0(9)-0(¢)#0 (i)

Substitution of (ii) into (i) and dividing through the resuly by u(r, 9,4) yields
R" 2R' 10" Cotd o’ 1 ¢
t———+—————=( (i)
RrRr@ -0 r'dndo




[}
R" 2R 160 C09®’ oo @

—4-—4 “Sin” §=-— v
R TR r@ 0 0

Observe that the Ihs of (|v) are functions of rand & while the rhs s a function of @ only. This can only bg

valid f each side s a constant m", say. Therefore, we have that

0"+m0=0 )
E(r2 R"+2rR')+3(®"+00t9®'):m—2 i
R B Sin’ &



e,
2
i(@”+Cot9®’)— _m2 - —E(r2 R”+2rR') (vii)
0 sin“3 R
Eqn (vii) is true if only each side is a constant —1(I +1).This condition gives rise to the following
uncoupled ordinary differential equations:

r’ R"+2rR" —I(1+1) R=0 (viii)
, .
0"+ Cots0'+ | (1+1)- Si':z 5100 (ix)
Substititing Cos 9 = x in (ix) yeilds
d°® do | m?
(1_”2)dﬂ2 _2ﬂa+<\|(|+1)—1_ﬂ2 f®:0 (x)




Eqn (x) I associated Legendre differential equation.
Solving Eqns (v),(viii) and (x) in standard form we obtain
®, (4)= A, Cosmg+B, Sinmg (xi)
R (1) =C '+ (il
[
and
0, (9)=E,P"(Cosd)+F,Q"(Cosd)  xiii)

The general solution of the PDE Is therefore

D

mzzll A Cosmg+B_ SIHW)(CI‘ |1J(E P" (Cosd)+ leQl”‘(Cos&l)) (xiv)



The aroirary constants are chosen n & manner tat the solution 15 bounceg. T implies thet F, =0

0 (Cosﬂ) -85 J- 0, Consequently the general soution s

u(r,9,¢):iiEm|P|m (Cos) A, Cosmg+B, Sinmg) G+ W

Asolton oftheproblem nthe form (1) i and i e calledserica hermonics whil e ol

on i and i caled plene harmonics



44 SOLUTION OF THE 3-D WAVE EQUATIONS IN CURVILINEAR COORDINATE SYSTEM.
(1) Cylindrical; (r,9,z)

. O0u lou Lou ou 1dv
V=t t =
oc ror oy o ¢ ot
(I1) Spherical; (r,d,)

. 0U 200 Lo Cotdou 1 du 1w
VU= bt ot =
o ror oy 0¥ r\Sintgadp ¢

In this section we will solve the problem for the cylindrical coordinate system, the the shperical case

follows the same procedure.



Solution.
\We recall that the governing eqution in the coordinate system (r, 9, z) IS gIven as

oy lou 10 ou 104 |
PP PR (i)
ot ror rto% ot ¢ ot

Assuming a seperable solution of the form

o(r8,20)=R(NO(AZ()T(H)#0 (i

and dividing through by u we have

1(R”+1R) & r AT i)
R 1 r@ [ C




Ihs of (iii) IS a function of r and 3 while the rhs Is a function of t. The equation Is only true If they are

both constant say — p°.

e,
T=cpT (iv)
and —(R”+1R’j+ il Z” =-p’ (V)
I r'e  Z
ie, —(R”'F%R’j — 0"+’ —Z— =s°  (vi)
= 7"+5°7 =0 (vii
%(r R"+1R)+(p’ z)rzz—®—’ o (viii)



Eqn (viii) results in the following uncoupled ODEs:

O +a°®=0
r’R"+rR'+(B°r* —a® )R =0
where B° = p° —s°.
Eqn (x) is the Bessel's differential equation.
We thus have the following solutions:
T(t) = A, Cos(cpt)+ B, Sin(cpt)
Z(z) =C,Cos(sz)+ D, Sin(sz)
®(%) =E, Cos(a?)+F,Sin(a9)
R(r) =G, d(Br)+H_ .Y (pr)

(ix)
(%)

(xi)

(xii)
(Xiii)
(xiv)



The general solution Is therefore given by

0(r8.28)=YY Yu (r.8.21) ()

p=0 =0 a=0
inwhichu,, isas defined in (xi) through (xiv).
In practical application u < oo everywhere including r =0.= H =0 Y (fr) > wasr -0,
Therefore, the finite solution Is given by

u(r,8,2,t)= iiiGpwJ (ﬂr){Ap Cos(cpt)+B, Sin (cpt)}{CS Cos(sz)+ D, Sin (sz)} X

p=05=0 a=0

[E, Cos(ad) + F, Sin(ad)



4 Obtain the solution of the transverse vibration of a thin membrane bounded by a circle of radius a desc-
it by the function (1, 31 satisfying the wave equation V°u =", satisying the conitons:
0(a,9,)=0u(r,8,0)=f(r.9)u{r,8,0)=4(r.)

Solution.
The Initial boundary value problem is represented by

o°'u leu 1 0°u ou 1o
2 A T A e T A2 T 2 A
or- ror r°o% o025 c° ot

u(a,t)=0, -7<I<7,t20 - (i)

u(r,4,0)=f(r,9),u,(r,4,0)=¢(r,9).0<r<a,-z<9<z




Assuming a seperable solution of the form
u(r,3,t)=R(r)®(9)T (t) =0 (ii)
and dividing through by u we have

E(Ruerj, O _ 1T _ 2 i)

R r r’e c?T

T+c’A°T =0 (iv)
1 1 M

—| R"+=R" |4 A% =0

R( e j r’e (V)

i(R”+1R’j+ﬂ,2 = C;)” (vi)
R I re®



i( R”_|_rR') yE :—® = m?
R ®
Hence, we have

®"+m‘®=0

2
R”+1R’+(12 mszzO
r r

The solutions of (iv) and (viii) are respectively
T(t)= A, Cos(cAt)+ B, Sin(cAt)
®(4)=C, Cos(m3)+ D, Sin(mY)



Eqn (ix) is the standard Bessel's differential equation withe solution

R(r)=E,J, (1) +FY, (1) (il
Since solution must remain finite everywhere, we observe that Y, (r4) - wasr 0= F, =0
R(r)=E,J, (1) (il

Thus
u(r,4t)=1, (M){Al' Cos(cAt)+B, Sin (c/lt)}{Ci Cos(m9)+D, Sin(mg)} (i

inwhich A =AE andB, =B.E .



Recall that
U(a8t)=0; -r<d<t20
= R(a)0(9)T(t)=0 ieR(a)=0O(I)T(t)=0=u(r,4t)=0trivially
>, (4a)=0 i)
This s an eigenvalug problem with Infinite solutions
Thus, suppose 7, (k =1.2,3---] ae the posiive roots of (iv) then the general solution becomes

u(r,9,t):iiJm(ﬂkr)<:Ai'Cos(cﬂkt)+Bl'Sin(cikt)}{CACos(m%DiSin(mS)} i

k=0 m=0




Axisymmetric solutions.
This Is the case where u Is independent of 4.

e,

0(r,88)= Y. Y3, (A41)| A’ Cos(c4,1)+B, Sin(cAt) (i)

k=0 m=0
in which 7, are the positive roots of J, (4,r)=0. In view of the boundary condition we have

u(r,g,o)::ZOA;Jo(zkr): f(r) (vii)

This is Fourier-Bessel series. To obtain the coefficients A, " we have

a

j r)dr = Ii A.r)dr

0



k=0
= Aj’erO2 (/Ijr)dr = erO (ijr)f (r)dr
0 0
But irJ 2(/I.r)dr:a—z_J ?(Aa)+]1- P’ J Z(A.a)_ (xviii)
O p J 2 p J aZﬂjZ P J _

Recall also that J (/Ija) =] 2 (/Ija)

p+1

a a2 a‘2

ie, [r35? (4r)dr = 730’2 (4,a) :7Jf (4a)

0



d ? d

= A 13,7 (4r)dr = %Jf (4,a) A = [, (41 )f (r)dr
0 0

, 2 .

A'= o (/Ija)grjo(ija)f (r)dr (Xix)

From the initial condition we have

o SURXILENY (0




As in the above, we therefore have

J;i; Mo (Ar)dr IJO(ijr)g(r)dr
cAB, TJOZ (4, )dr = TJO (4;r)g(r)dr

B, = jJO (xxi)

cﬂ,aJ O

Therefore, (XV|) IS the solutlon for radially symmetric wave with coefficients defined in (xix) and (xxi).



Characteristic Mapping Method for Incompressible Euler Equations

The characteristic mapping method is a method for
solving linear advection problems with arbitrary initial
conditions. Its unique property is the decoupling of the
computational and solution representation grids, thus
allowing small length scales to be accurately
represented in the solution with overall low
computational cost.



Linear Advection Equation

Advection is the process of transport of quantities
in a velocity Field.The quantities could be properties
of fluids such as mass or momentum or a general
macroscopic quantity like trac density. The velocity
field could be a constant or a function of space and
time. The following partial differential equation
describes the phenomenon:



ot(Z,t) + (u(Z,1).V) o(z,t) = 0 (2.1)

for © € R™ and t € RT, where ¢ : R" x BT — R is the scalar field
representing a quantity and @ : R x RT — R" is the advection velocity. In

one dimension with constant velocity the equation ssmphfies to the following.

b + udy = 0 (2.2)

The equation 1s called non-lmear when the velocity field also depends on

the scalar field ¢, which makes the theory more mvolved as discussed later



—¢(t=0)

—¢(t=0)

0 2 0 2

(a) Advection in constant velocity field (b) Adwvection in variable veloaity field

Figure 2.1: Advection of scalar quantity o



The scope of this work spans the Cauchy problem of advection equation.

later developig to fhnd How problems:

1
=

ot + (1.V)9
o(z,0)

(2.3)

g(7)

where @ : R" x RT — R™ and ¢ : R — R are given functions representing
the velocity field and 1mtial conditions respectively. We are also given that

g 15 contimuously differentiable.



[ problem 1s of central mportance m the area of computational flud
dynamics, for 1t provides a mimimal model for analysis of numerical methods

aiming to solve complex flud flow problems,
T'he advection equation 1s hyperbolic m nature and has a fmite propagation

speed, The solution at each pomt travels along globally well defmed curves



called characteristic curves. The methods of characteristics proposes, for the

Canchy problem for the non-homogenous advection problems of form -
ot + (WV)p = f
o(z,0)

(24)

1
L
—

~]
-

the following solution:

=3
g ——
-]
—
2] —_—
— -
o e
S S
|| |
— ey
— —
— -y
- =
-+ —
1{‘:--""""-,1 1
(0
=l
Y E'""";
o
T —
o S
—
L
S
G
™
el
L
— —
) e
o (alioy 3
[ . S



where f: R" x KT — R 15 known as the source term.

The solution simplifies for the homogeneous case (f(7,1) =0).

6G(sht) = g(5(0) 21)
Ss) = 70)4 f i(7) ds 28)
(

The solution at any pomt m space and time depends only on the pomt.



More precisely, 1t remains constant in time along the locus 7(s) dictated by
the following mitial value problem.
il
ds 29
70)= %

=1

Fig. 2.2 shows the characteristic curves +(s), the solution to the mitial

value problem (equation. 2.9) for advection of scalar quantity ¢ with a

velocity u(z).



Figure 2.2: Representation of characteristic curves for one-dimensional

advection problem



Since the solution of the Cauchy problem (equation (2.3)), the solution (equa-
tion (3.3)) can be written m the form of ¢(zy, t) = g(z'¢) having a unique

pomnt 1 ¢ for each g, the characteristic mapping method proposes to compute
amap Y : R" x RT — R" such that :

o(Z,t) = g(X(Z,1)) (2.14)

From the global exastence and umqueness of a characteristic curve mitial-

value problem given in equation (2.9), \ 1s guaranteed to be a bijective map

—_

X



The characteristic maps can be computed solving the equation;

b

; (2.15)

.,

fﬂ + (ﬁ.?)f ()

\(T,0) = 7

The above Cauchy problem 1s solved using GALS. Transforming the prob-
lem nto this form removes the smoothness condition from the mitial condi-
tion g. This allows us to solve the advection problem with arbitrary mtial

conditions. Moreover, the analysis of the error of approximation shows a

reduction for general case.
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(e) t = 0.4 (F) £ — 0.5

(d) t = 0.3
Figure 2.7: Advection of 2D map in velocity field in equation (2.16)




Fig. 2.7 shows the evolution of the characteristic map n the two-dimensional

velocity field prescribed n equation 2.16.

w= cos(mt)sin® (7z)sin (2r
(vt)sin” (7z) sin (2ry) } o1

v=—cos(mt)sin® (my) sin (27z)



2.3.1 Remapping

According to the definition of characteristic maps, they can be composed to

form another map.

—

Y = X19X9 2.17)

The composition of two cubic maps gives a sixth order polynomial m each

variable. Forming another cubic map from 1t 1s a projection, which can be



computed on a fmer grid, thus retamme more sub-grid features. This makes
the method more robust because every time the global error of approximation
rrows, the map can be resampled on & finer map, and the problem can be
renitiated |12]. This allows us to represent the solution on a finer grd than

the grid on which the computation of Y 15 performed



Figure 2.8: Applying map



4.1 2D Incompressible Euler Equation

Enler equations are a set of non-linear hyperbolic conservation laws govern-
mg the flow of adiabatic and mviseid flow. Along with the meompressibility
constramt (equation (3.2)), 1t 1s a very reasonable model for low Mach num-

ber flows. Euler equation provides an excellent case for testing characteristic



mapping method on nonlmear fmd flow problems Applymg the meompress:

ihility constramts, the equation simplifies to the following:



where 1 18 the velocity field, p 1s the density, and p 18 pressure. The
meompressibility condition 1mplies that the volume spanned by a certam
ttmd element remams constant m time,

Introducing vorticity & = V x 1, the equation can be written m form

of & non-homogenous nonhnear transport equation called vorticity transport



equation obtamed by takmg the curl of the equation (4.3).

G+ (iV)5 = (V)i - ﬁ(v.-ﬁ)+1?vvap 42

p

Further assummg the flow to be 2-dimensional and barotropic (Vpx Vp =

0), the equation smphfies to homogeneous transport equation.



(43)

The equation 15 solved together with the mecompressibility constramt

along with mitial data of 4 given and m perodic boundary conditions.



4.2 Characteristic Mapping Method for Eu-
ler Equation

While solving the equation (77), we need a relation to compute advecting
velocity field such that the incompressibihity constraint 1s satisfied. The fol-

lowing construction allows that.

s Al
'-i,_-'
(4.4)

=]
Il
<]
|_
g



where ¢ 15 an mtermediate stream function and V- stands for perpendicular

oradient (B%’ —B%)

Algorithm (4) shows the basic overview of the steps of the characteristic
mapping method. The problem 1s mitialized with an mitial Cauchy data wy,
defined on a set of pomts X, = {7} forming a uniform grid with grid spacing
h and periodic boundary conditions. A characteristic map y - T2 -5 T2, set

to 1dentity y(,0) = 7 1s taken as the mitial condition for the map. A



tme step df 15 chosen such that constramt m equation (2.12) 1s followed

throughout the desired runmmg tme of the smulation and tme ty, 18 defined

to be n.dt



Algorithm 4 Characteristic mapping method for solving incompressible Eu-

ler equation

1: X(F,0) =F

2: wyp
3 =01t =10
4: N, dt

5 while n = N do

G {-l.-'ﬂ{f} — wﬂ{:{_ﬁ{f-. tﬂsﬂ
T advect X(:,fn) — X(:,tpy1) using wn
8- n=mn-=+1

3 end while

10: wp (T) = wo(X(T, )
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