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SUMMARY

THE LECTURE IS DIVIDED INTO FOUR 

SECTIONS:

SECTION ONE : FRIST ORDER PARTIAL 

DIFFERENTIAL EQUATIONS

SECTION TWO: PARTIAL DIFFERENTIAL 

EQUATIONS OF SECOND AND HIGHER ORDERS

SECTION THREE: SECOND ORDER 

DIFFERENTIAL EQUATIONS II

SECTION FOUR:  BOUNDARY VALUE 

PROBLEMS



SECTION ONE

FRIST ORDER PARTIAL DIFFERENTIAL 

EQUATIONS

1.0 INTRODUCTION: First-order partial differential 
equations (PDEs) are equations that involve first-order 
partial derivatives of an unknown function with 
respect to multiple variables.
 A first-order partial derivative of a function
                                                                              
with respect to one of its variables, say is        , is     the 
derivative of u while keeping all other variables 
constant.
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A general first-order PDE in two variables can be written in the 
form:

, , , , 0                                                       1.1
u u

F x y u
x y

  
= 

  

Where:

,    are the dependent variables

( , )   is the unknown function

  are the first order partial derivatives of u wrt x and y respectively

x y

u u x y

u u
and

x y

=

 

 



Types of First-Order PDEs

First-order PDEs can be classified into various types, such as:

1.1.1

1.1.2



1.1.3

1.1  DERIVATION OF PARTIAL DIFFERENTIAL EQUATIONS

( )

( )

Consider the family of surfaces

                   , , , , 0               

where  and  are constants and  is dependent on  and  ,  are independent variables

f x y u a b

a b u x y x y

= 1.1.4



( ) ( )To derive  an appropriate partial differential equation  from 1.1.4  we eliminate the constants  and PDE a b

( )Differentiating 1.1.4   wrt  and  we have the following equations :respectively:

                   0                                                                        1.1.5

        

x y

f f u

x u x

  
+ =

  

( ) ( ) ( )

           0                                                                         1.1.6

Eliminating the constants  and  from 1.1.4 , 1.1.5  and 1.1.6  we obtain a general relation

       

f f u

y u y

a b

  
+ =

  

( )

( )

            , , , , 0                                                                     1.1.7

Eqn 1.1.7  is in general a -   if the number of constants to be eliminated is the same as th

F x y u p q

first order PDE

=

at

of the independent variables and is of   if the number is greater than the number of the 

independent variables.

higher order



1.1.2 DERIVATION 

( )

Consider the family of surfaces

                 , 0                                                                1.1.8

where  is an arbitrary differentiable function of  and  that are in turn k

f g

f g





=

nown differentiable functions 

of some independent variable  and  with u also a differentiable function of  and .

Differentiating  wrt  and  we have

              . . . .

x y x y

x y

f f u g

f x f u x g



        
+ +

      
. . 0

              . . . . . . 0

g u

x g u x

f f u g g u

f y f u y g y g u y



   

  
+ =
  

         
+ + + =

         



( )

( )

. .

 =0                                1.1.10   

. .

Eqn 1.1.10  is equivalent to

                  . ,                                                           1.

f f g g
p p

x u x u

f f g g
q q

y u y u

P p Q q R

   
+ +

   

   
+ +

   

+ = ( )

( )

( )

( )

( )

( )

( )
( )

( )

1.11  

where 

, , ,
                  ,  and             1.1.12  

, , ,

Eqn 1.1.12  is first-order differential equation.

f g f g f g
P Q R

y u x u x y

  
= = =
  

. . 0

               1.1.9

. . 0

Eliminating  and  we thus have

f f g g
p p

f x u g x u

f f g g
q q

f y u g y u

f g

 

 

 

        
+ + + =    

         


         + + + =             

 

 



( ) ( ) ( )

( )

2 2 2 2

.

Eliminate  and  from the following families of surfaces to obtain a .

                                                     

Differentiating  partially wry  and  y

Example

a b PDE

x a y b u d i

Solution

i x y

− + − + =

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
2

eilds

                    2 2 0, ,  0              

                    2 2 0 ,  0              

Eliminate  and  from ,  and  yields

                    

u
x a u ie x a up ii

x

u
y b u ie y b uq iii

y

a b i ii iii

up uq


− + = − + =




− + = − + =



− + − ( )

( ) ( )

( )

2 2 2

2 2 2 2

                                   

,

                    1                                              

Eqn  is first-order differential equation.

u d iv

ie

p q u d v

v

+ =

+ + =



1.1.3 SOLUTION OF LANGRAGES LINEAR EQUATION  

( )

The general partial differential equation

                 . .                                                                                   1.1.13

where , ,  and  are functions of , and   i

P p Q q R

P Q R x y

+ =

( )

( )

( )

s refered to as the Lagranges Linear Equation.

 1.1

Given eqn 1.1.13  in which 

, , 0
                                                                                                 

, , 0

Theorem

f x y u

g x y u

= 


= 

( )1.1.14

( )

( )

constitute the integral curves of the simultaneous ordinary differential equations 

                                                                                                1.1.15

ODEs

dx dy du

P Q R
= =



( )

( ) ( )

Then the general solution of 1.1.13  is given as 

                       , 0                                                                                 1.1.16  

where  is an arbitrary differentia

F f g

F

=

( ) ( )

( )

ble function. Further , ,  is any solution of 1.1.13  and if first

-order derivatives of ,  and  are all continuous then the solution 0 is contained in the general

solution of 1.1.16 .

w x y u c

f g w w c

=

− =

Proof

( )Differentiating the relationship 1.1.14  yields

                    0            

                    0 

f f f
dx dy du

x y u

g g g
dx dy du

x y u

  
+ + =

  

  
+ + =

  



( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

                        1.1.17
, , ,

, , ,

Since 1.1.15  determines the integral curves of 1.1.16  then we have from 1.1.17

                               
, , ,

, , ,

dx dy du

f g f g f g

y u x u x y

P Q R

f g f g f g

y u x u x y

= =
  

  

= =
  

  

( )

( )

               1.1.18

Now considering any functional relation 1.1.16  when  is differentiable we have

. . . 0

                      

. .

F

F f f F g g
p p

f x u g x u

F f f F g
q

f y u g y

        
+ + + =   

        

     
+ + + 

     

( )            1.1.19       

. 0
g

q
u






  =    



( )

( )

( )

( )

( )

( )
( )

( ) ( )

Eliminating  and  from the above yields

, , ,
             . .                         1.1.20

, , ,

Comparing 1.1.13  and 1.1.20  we have that

                 . .               

F F

f g

f g f g f g
p q

y u x u x y

P p Q q R

 

 

  
+ =

  

+ = ( )

( ) ( ) ( ) ( )

                         1.1.21

showing that 1.1.11  is a solution of 1.1.8 . Thus, 1.1.11  is a general solution of 1.1.8 . 

( )

( )

Consider any solution , , .

Differentiating partially we have the following:

             . 0  

                                                 1.1.22   

             . 0   

w x y u c

w w
p

x u

w w
q

y u

=

  
+ =   


 

+ =
  

 



( )

( )

It therefore follows that,

                         

                                              1.1.23    

                           

On substituting  and  into 1.1.8

w

xp
w

u

w

y
q

w

u

p q

 
= − 


 





 
= −




 

( )

( ) ( )

( )

( )

( )

( )

( )

( )

 we obtain

                                                          1.1.24

and in view of the relation 1.1.13  and 1.1.24  we have

, , ,
             

, , ,

w w w
P Q R

x y u

f g f g f gw w w

y u x x u y x y x

  
+ + =

  

    
 +  +  =

     
( )0              1.1.25



( )

( )
( )

,

, ,
                         0                                                1.1.26

, ,

Since the partial derivatives of ,  and  are supposedly continuous, the vanishing of the Jacobian  

ie

f g w
J

x y u

f g w J


= =


( ) ( ) ( ) ( )

( )

in

1.1.26  implies a functional relation of the form , . Hence, , ,  , say.

Therefore, the solution 0  is contained in the general solution 1.1.11 . This completes the proof of

the theor

w f g w c f g c G f g

w c

 = − = − =

− =

em.



1.2 GENERAL METHOD FOR THE SOLUTION OF FIRST-

ORDER PARTIAL DIFFERENTIAL EQUATIONS

THE GENERAL METHODS FOR SOLVING FIRST ORDER 

PDEs ARE:

1.CHARPIT’S METHOD

2. JACOBI’S METHOD 



1.2.1 CHARPIT’S METHOD

( ) ( )

Given the  

                    , , , , 0                                                                                  1.2.1

Since  is a function of both  and  we thus have

                 

PDE

F x y u p q

u x y

=

( )

( )

                                                                                           1.2.2

If we have another function

                    , , , , , 0                                 

du pdx qdy

F x y u p q a

= +

= ( )

( ) ( )

( ) ( )

                                               1.2.3

it will be possible to evaluate  and  from the two equations 1.2.1  and 1.2.2  in the form 

, , ,  and , , , . 

p q

p x y u a q x y u a = =



( )

( )

Substituting these values into 1.2.2  renders it directly  integrable or integrable using some weighting 

function and the integral which is of the form , , ,  will be a solution of the original f x y u a b PDE= ( )

( )

( )

 1.2.1 . 

For this solution gives:

                     0

                                                               1.2.4
or                0

Comparing 1.2.4  with

x y u

yx

u u

f dx f dy f du

ff
dx dy du

f f

+ + = 



+ − = 
− − 

( )

( )

( ) ( )

 1.2.2  we have

              

                                                                                     1.2.5

               

From  , , ,  treating ,  we have

  

x

u

y

u

f
p

f

f
q

f

f x y u a b u u x y






= = − 


= =
− 

= =

 ( )                   0,   0                                                         1.2.6x u y uf f p f f q+  = +  =



( )

( )

( )

1.2.6  implies

                     ,
                                                                          1.2.7

,                   and 

Since  and  satisfy 1.2.1  it t

yx

u u

ff
p q

f f

ie p q

p q

 

 


= − = − 


= = 

= = ( ) ( )

( )

hus implies that , , ,  is a solution of 1.2.1 . Since

this solution contains two arbitrary constants, it is therefore a complete solution of 1.2.1 . The problem 

now therefore is to determine the fun

f x y u a b=

( )

( ) ( )

ction 1.2.3 refered to a the auxiliary function. In doing this we

observe that the quantities , ,  substituted into 1.2.1  1.2.3  satisfy them identically. As a matter of

fact the partial derivatives of 

u p q

F  and  with respect to u,x and y must vanish.G



From eq. (1.2.1)

( )

                0

      1.2.8

                0

                0

                

F F F p F q
p

x u p x q x

G G G p G q
p

x u p x q x

F F F p F q
q

y u p y q y

G G G p G
q

y u p y q

      
+  + + =       


      +  + + =

      

     
+  + + =

     

    
+  + +

    

( )

( )

( )

( )

( )

( )

( )

( )
( )

      1.2.9

0

Eliminating  in 1.2.8  we have

, , ,
                0   1.2.10

, , ,

q

y

p

x

F G F G F Gp
p

x p u p x q p






 =
 





  
+  +  =

   



( )

( )

( )

( )

( )

( )

( )
( )

( )

( )
( )

Similarly, eliminating  in 1.2.9  we have

, , ,
                0   1.2.11

, , ,

where 

,
                                             1.2.12  

,

Recalling th

q

y

F G F G F Gq
q

y q u q y p q

x y x y x y

s t s t t s





  
+  +  =

   

    
= −

    

( ) ( ) ( )

( ) ( )

2 2

at

                 = = = =              1.2.13

we thus have from 1.2.11  and 1.2.12  that

 

q u u u u p
q p

x x x y x y y x y x y y

F F G F F G F F
p q p q

x u p y u q p

           
= = =   

             

         
+  + +  + −  −   

         
( )0  1.2.14

G F G F G

q u p x q y

         
+ − + − =     

          



( )This is a linear differential equation of order 1 that must be satisfied by 1.44 . Its integrals are integrals

of the Lagranges auxiliary equations

               
dp dq du

F F F F F
p q p q

x u y u p

= =
    

+  +  −  − 
    

( )

( ) ( )

( )

                        1.2.15

Eqns 1.2.15  are known as Charpit's auxiliary equations. Any integral of 1..2.15  involving  or  or both

is taken for the required second relation 1.2.3

du du

F F F

q p q

p q

= =
  

− −
  

( )

( ) ( ) ( ) ( )

. In fact the simplest relation of these is taken as 1.2.3

On obtaining 1.2.3   and  are determined from 1.2.1 1.2.3  and the values substituted into 1.2.2  

which on integration we obtain the required co

p q −

mplete solution of the given differential equation.



1.2.2  JACOBI’S METHOD

( ) ( )1 2

In the last section  we  discussed the Charpit's method for solving a PDE involving two independent

variables  and  say . The present method Jacobi's  is quite similar. It is expedient here to recallx x

the following very important theoerem in differential calculus:

( ) ( )( ) ( )1 2 3

1 1 2 2 3 3

 1.2

 If the functions , , , 1 1 3  posess continuous partial first derivatives in   , 1 1 3

 then 

                      + +                                                  

j j

Theorem

x x x j x j

dx dx dx



  

= =

( )

( )3 32 2 1 1

3 2 1 2 3 1

           1.2.16  

is an exact differential equation iff 

                     0 , 0 , 0            1.2.17  .
x x x x x x

        
− = − = − =

     



( ) ( )

Suppose we have a differential equation

                        , , , , 0                                                                   1.2.18

explicitly involving the independent variable . We 

f x y u p q

u

=

( )shall prove that 1.2.18  can be transformed into another 

differential equation with a new dependent variable which does not explicitly occur and the number of 

independent variables increased by unity in the process.

( )
( )

1 3

We shall rename the variables as follows:

                          , ,  
                      1.2.19

and introduce a new variable , ,   

we now consider the relation 

                 

ex x y x u x

v v x y u

= = = 


= 

( ) ( )            , , 0                                               1.2.20v x y u =



( )

( )

1 2 3

1 2 3

1 2

3 3

By assuming  , ,  , 1.2.20  yields

                         0

                         0                1.2.21

,   and          

Thu

v v v
p p p

x x x

v v u

x u x

v v u

y u y

p p
ie p q

p p

  
= = =
  

  
+ = 

   
  

+ = 
   


= − = − 



( )

( )1 2

1 2 3

3 3

s, 0 will be a solution to 1.2.18  iff

                       , , , , 0       1.2.22

v

p p
f x x x

p p

=

 
− − = 

 



( )

( ) ( )1 2 3 1 2 3

1 2 3

Eqn 1.2.22  is an equation of the form

                       , , , , , 0       1.2.23

Clearly, this is a  in three independent variables , ,  that does not explicitly involve the depen-

de

G x x x p p p

PDE x x x

=

( )

nt variable  which ends the proof. 

This method applies to   of the form 1.2.23  whose central idea is to construct two more auxiliary 

v

PDE

( ) ( )

( )

2 1 2 3 1 2 3

3 1 2 3 1 2 3

relations of the form

                       , , , , , , 0                                                                1.2.24

                       , , , , , , 0                 

G x x x p p p a

G x x x p p p b

=

= ( )

( ) ( )( ) ( )1 2 3

                                               1.2.25

                        , , , , , 1 1 3                                                       1.2.26j jp x x x a b j= =



( )

1 1 2 2 3 3

2 3 1 2 3

1

1

and such that  becomes exact DE when .

Whenever such function ,  can be determined then there exists , , , ,  such that

                               

             

j jp dx p dx p dx p

G G x x x a b

x








+ + =


=



( )2

2

3

3

1 1 2 2

                                                                                                      1.2.27

                               

then with  the DE  j j

x

x

p p dx p dx














= 
 


= 

 

= + +

( )

3 3 0 becomes 0 which then yields

                                                                                                                    1.2.28

p dx dv d dv

v A





− = − =

− =



( ) ( )

( )
1 2 3

1 2 3

1 1 2 2 3 3

1 2 3

Observe that from 1.2.28  we get back 1.2.27

                        , ,

                       1.2.29

,                      , ,       

Since 

p p p
x x x
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SECTION TWO

2.0 PARTIAL DIFFERENTIAL EQUATIONS OF SECOND 

AND HIGHER ORDERS
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2.1  LINEAR EQUATIONS.

The most general linear order Partial Differential Equations  is of the form 
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in which ,  is a differential operator of order .
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           exp                                                     

,

1
                   exp                                              

p
r

r

r

p
r

r

r

x u x c xvi

ie

u x x c dx




 




 

−

=

−

=

  
 =  

  

 
= 

 



 ( )

( ) ( )
1

      

1
                                                                                                 

rp

r

r

xvii

x
c xviii

r


 =

= 



( ) ( ) ( )
1

The general solution is therefore

1
                   exp                                  

in which  is an arbitrary differentiable function. This general solution m

rp

r

r

x
u x c c x y xix

r


   

 



=

 
− + = − 

 


( ) ( )
1

1

1

ay also be written in the form

                   exp                                                        

which is the theorem for 1

This completes the induction a

p
r

r

r

u x x x y xix

m p


  



+
−

=

 
= − − 

 

= +



( )

( ) ( ) ( ) ( )

nd hence the proof of the theorem.

We note that if the operator ,  is reducible it will be seen that

                         , ,                                                    
x y x y

F D D

F D D e F e
   

 
+ +



 = ( ) 2.8



( ) ( )

( ) ( )

Therefore it follows that exp  is a solution of , 0 if 

                         , 0                                                                                        2.9

In general, 

u x y F D D u

F

 

 

= + =

=

( ) ( )

( ) ( )
1

, 0 gives different pairs of solutions , . This way we obtain different solutions

exp  where  are constants. Obviously the linear combination exp  is also

a solution. Indeed

j j

m

j j j j j j j

j

F

c x y c c x y

   

   
=

=

+ +

, the most general solution is of this form.



( ) ( )

( ) ( )

( )

2.2.2 Particular Integrals

To determine the particular integral .  of eqn 2.5

,

                      , ,

we shall employ the following two methods:

Method I

If the operator ,  is a reducible o

P I

ie

F D D u f x y

F D D

 =



( ) ( ) ( )
( )

( )
( )

( )
1 1 1 2 2 2

1

perator then the Particular Integral is of the form

1 1 1
. ........... ,

     2.10
1

                             ,

m m m

m

j j j j

f x y
D D D D D D

f x y
D D

        

  =


  + + + + + + 

=
+ +






( )

( )
( ) ( ) ( )

We start the implimentation of the inversion operation 2.10  from the last factor on the right as

1
                  , ,  say                                            2.11

,

          

m m m

f x y G x y
D D

ie

  
=

+ +

( ) ( ) ( ) ( )

( )

        ,  ,                                                  2.12

                                                                                 2.13

This is Lagra

m m m

m m m

D D G x y f x y

G G
f G

x y

  

  

+ + =

 
 + = −

 

( )

nges linear equation with the corresponding auxiliary equations

                                                                                               2.14
m m m

dx dy dG

f G  
= =

−



( )

From the first two relation we obtain

0                                                                                 
                    2.15  

,     

Similarly, we have that

    

m m

m m

dx dy

ie x y c

 

 

− = 


− = 

                                                                           

,

                        , 0                                                     

m

m m m

m

m

m m

f GdG dx dG

f G dx

ie

dG f
G

dx



  




 

−
=  =

−

+ =  ( )

( )

                 2.16

This is a first order ODE with an integrating factor  

m m

m m

dx x

IF e e

 

 

 
  
 


=



( )

( )

,                         ,  0                                                           2.16

1
,                         , ,  

m m

m m

m m m m

m m m m

x x

m

m

x x x x

m

m m

f
ie e G e dx

f
ie G e e dx e e f x y dx

 

 

   

   





 

− −

 
  = 
 
 

= =



  ( )

( ) ( ) ( )

0                     2.17

Similarly,we have 

1
,                         , ,  say,  0                              2.18

Observe that no arbitrary constant is introduced becau

m m

m m

y y

m

m

ie G e e f x y dy x y

 

   


−



= = 

( )
( ) ( ) ( )

se  does not contain arbitrary constants.

It therefore follows that

1
                  , ,                                                                   2.19

This way we operate fro

m m m

PI

f x y x y
D D


  

=
+ +

m the remaining factors from right to the first on the left in turn to finally

obtain the PI



( )

( ) ( ) ( ) ( )

( )

1 2

1 1 1 2 2 2

1

 

1
Decomposing the operator  into partial fractions as

,

1
...........

,

                =                                       

m

m m m m

m
j

j j j j

Method II

F D D

AA A

F D D D D D D D D

A

D D

        

  =



= + + +
   + + + + + +

+ +
 ( )

( )
( ) ( )1

1 1 1

                            2.20

we then perform the inverse operation term-wise to obtain the required  as demostrated in 

the following steps:

            , ,                       

PI

A
f x y G x y

D D  
=

+ +
( )                              2.21



( )
1 1 1

with the corresponding auxiliary equation

                                                                                            2.22
dx dy dG

f G  
= =

−

( )1 1

1 1

From the first two relation we obtain

0                                                                                 
                    2.23  

,     

Similarly, we have that

    

dx dy

ie x y c

 

 

− = 


− = 

1

1 1 1

                 
f GdG dx dG

f G dx



  

−
=  =

−



( )

( )

1

1

1 1

1 1

1

,

                        , 0                                                                      2.24

This is a first order ODE with an integrating factor  exp exp

ie

dG f
G

dx

IF dx




 

 

 

+ = 

 
= 

 


( )

1

1 1

1 1

1 1 1

1 1

1

1 1

1

,                         exp exp ,  0                                                2.25

,         exp exp

                

m

x

f
ie x G A x dx

f
ie G A x x dx

A

 


  

 

  

 
 
 

   
=    

   

   
= −   

   

=





( ) ( )

( ) ( )

1 1

1

1 1 1

1 1 1

1 1 1

exp exp , ,  0                                                   2.26

Similarly,we have 

,                         exp exp , ,  say,  m

x x f x y dx

A
ie G y y f x y dy x y

 


  

 
 

  

   
−    
   

   
= − =    

   



 ( )0             2.27



( ) ( )1 1 1 2 2 2

1 1 1 2 2 2

The expression for the PI is therefore given nas

exp exp , exp exp , .............

.................... exp expm m m

m m m

A A
x x f x y dx x x f x y dx

A
x x f x

   

     

 

  

       
− + − + +       
       

   
+ −   

   

 

( ) ( )

( ) ( )1 1 1 2 2 2

1 1 1 2 2 2

, ,    0                                              2.28

or

exp exp , exp exp , .............

.................... exp

j

m m

m m

y dx

A A
y y f x y dx x x f x y dx

A
x



   

     



 



       
− + − + +       
       

 
+ −





 

( ) ( )exp , ,    0                                              2.28m

j

m

x f x y dx





 
  

  




( )

( )

( )
1

1

,

 exp exp , , 0 

                                  2.29

or exp exp , , 0 

m
j j j

j

j j j j

m
j j j

j

j j j j

ie

A
x x f x y dx

A
x x f x y dx

 


  

 


  

=

=

   
−     
   

   


    
−        
    

 

 



( )

( )
( )

( ) ( )

2.2.3 Some Special Cases.

We recall that the particular integral of 2.6  is given as

1
                  , . ,                                       2.30

,

This is determined almost the same way as

pu x y f x y
F D D

=


( )
11

 that of .

The inverse operator may be expanded using the Binomial Theorem and thereafter performing the

integration ,  nwith respect to  and  respectively. The  corresponding to certain s

ODEs

D D x y PI
−−  pecial

functions may be obtained by much shorter method than the general method.

In this section we note the following pertinent rules:



( ) ( )
( )

( )
( )

( )
( ) ( )

( )

 :

1 1
              . .  provided , 0

, ,

 :

1 1
              . , . , , ,  is arbitrary.

, ,

 :

If , 0 in  , then the  is obtained as

ax by ax by

ax by ax by

Case I

e e F a b
F D D F a b

Case II

e x y e x y x y
F D D F D a D b

Case III

F a b Case I PI

  

+ +

+ +

= 


=
 + +

=

( ) ( ) ( )

 follow:

1 1 1
              .  . .1 .

, , ,

and then apply case II.

ax by ax by ax bye e e
F D D F D D F D a D b

+ + += =
  + +



( )
( )

( )
( )

( )
( ) ( )

( )

2 2

2 2

2 2

2 2

 :

1 1
              .Cos .Cos

, , ,

1
            .Cos ,  provided , , 0

, ,

If , , 0 this case fails. We then compute the PI by considering the real and i

Case IV

ax by ax by
F D D F D DD D

ax by F a ab b
F a ab b

F a ab b

+ = +
  

= + 
− − −

=

( )
( )

( )
( )

2 2

1

maginary parts of 

1
                 

, ,

 :

1
              . ,

,

i ax by

m n m n

e
F D DD D

Case V

x y F D D x y
F D D

+

−

 

 =  



In this case we apply the Binomial theorem to the inverse operator and then operate on .

These methods are evidently shorter ways of obtaining the respective .

m nx y

PIs



SECTION THREE

( ) ( )

3.1   PARTIAL DIFFERENTIAL EQUATIONS OF THE CAUCHY-EULER TYPE

Equations of the of the Cuachy-Euler type are the PDEs of the form

                   , ,                                          F xD yD u f x y = ( )                             3.1

where  is a polynomial in the indeterminate  and .

In this case we make the following transformations:

                   ln ,  ln ,   and              

F xD yD

s x t y
s t

 



 
= = = =

 
( )                                     3.2



( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

2 2 3 3

2 2 3 3

It is therefore immediate from 3.2  that     

                  ,  1  and 1 2
  3.3

                  ,  1  and 1 2

Substituting 3.3  into 3.1  trans

xD u u x D u u x D u u

yD u u y D u u y D u u

     

     

= = − = − − 


  = = − = − − 

2 2 2 2

forms it into linear equation with constant coefficients with  and  as 

the new independent variables.

Examples.

   Transform the following   to linear form

                   4 4 4

PDE

x D xyDD y D yD

 

  − + +( ) ( )2 .   xD u x y i+ =



( )

( ) ( )

Observe that the given PDE is of Cauchy-Euler type. We then define the following transformation:

                    ln ,  ln ,   and              

Using  in  we obtain

                 

s x t y ii
s t

ii i

 
 

= = = =
 

( ) ( )

( ) ( )

( ) ( )

2 2

2 2 2

2 2

    1 4 4 1 4 .

,                  4 4 .                

                2 .                         

This is a linear DE with constant coefficient

s t s t

s t

s t

u e e e

ie u e iii

u e iv

      

  

 

+

+

+

 − − + − + + = = 

− + =

 − =

s.



( )

( )

2 2

2 2 3 2 2 3

2 2

1 1 1 1
                   .                             

   Suppose  and                    
2 2

Then

1
                or 

        

Example

u u u u
i

x yx x x y y y

x y
s t ii

u u s u u u
x

x s x s s x x

   
− = −

  

= =

     
= = =

     

( )
2 2

2 2 2 3

2 2

2 2 3 2

1 1 1 1
          

1 1
               

u u
iii

s s x x x x xs x x x

u

xx x x s





        
= = = −  
       

  
− = 

  



( )

( ) ( )

( )( )

2 2

2 2 3 2

2 2
2 2

2 2

Similarly,

1 1
                             

Thus the given PDE is transformed into

                or 0             

where  and 

             0

u
iv

yy y y t

u u
u v

s t

s t

 

 

   

  
− =

 

 
= − =

 

 
= =
 

 − + =



3.2 SECOND-ORDER  WITH VARIABLE COEFFICIENTS.

Definition.

A partial differential equation with variable coefficients is that which contains atleast one of the partial 

derivative of the second order a

PDE

2 2 2

2

nd none higher than the second. This is simplified if we consider the case

of two independent variables.

We shall define the following:

                    , , ,

 

u u u p u u
p q r s

x y x x y y xx

     
= = = = = = =
      

( )
2

2

       3.4

                     ,

u

y x

p u q u u q
t

y x y x y y yy

  
 

  


           = = = = = =              



Our discussion shall be limited to that of the variable coefficients which are of first degree in , ,

,                                                                                     

r s t

ie Rr Ss Tt V+ + = ( )            3.5

in which , ,  and  are in general functions of , , ,  and .

This will be illustrated by examples solvable by inspection.

Example.

1   Solve 2 2

R S T V Rx y p q u

s x y= +



( )

( )

2

2

The PDE is given by

                   2 2                                                  

Integrating wrt  we have

                   2                                  

Solution

u
x y i

x y

y

u
xy y h x

x


= +

 


= + +


( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

        

Finally, integrating wrt  yields

                   ,                 

,                ,                        

ii

x

u x y x y xy h x dx g y iii

ie u x y x y xy x g y iv

= + + +

= + + +





( )We note that 3.5  is a second - order quasilinear . It is linear if it can be put in the form 

                                                                                        

PDE

Rr Ss Tt Pp Uu V+ + + + = ( )

( )

( )

( ) ( )

2 2

2 2

2 2

2 2

3.6

in which , , , ,  and  are functions of   and .

  Sin

  

Observe that  is a second order quasilinear  while  is a linear second-o

xy

R S T P U V x y

u u u u
a x e u

x yx y

u u u u
b x xy u x y

x yx y

a PDE b

   
+ − − =

  

   
+ + + = +

  

rder .PDE



( )

3.3    MONGE'S METHOD.

In this section we shall discuss the Monge's general method of solving

                                                                                          3.7

in wh

Rr Ss Tt V+ + =

( )
2 2 2

2 2

ich , ,  and  are functions of , , ,  and  with ,  and  retaining their ususl definitions.

,

                 ,  and                                                   3.8

R S T V x y u p q r s t

ie

u u u
r s t

x yx y

  
= = =

  

( )

 

From 3.7  we recall that



( )

( )

( )

                                                   3.9  

                                                                   3.10  

From 3.9  we have

         

p p
dp dx dy rdx sdy

x y

q q
dq dx dy sdx tdy

x y

 
= + = +
 

 
= + = +
 

( )

( ) ( )

         and                                                   3.11  

Substituting 3.11  into 3.7  yields

                                           

dp sdy dq sdx
r t

dx dy

dp sdy dq sdx
R Ss T V

dx dy

− −
= =

 − − 
+ + =  

   
( )             3.12



( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

2 2

2 2

2 2

or              0

,             0

,             0        3.13

If there exists a relation bet

Rdpdy Rs dy Ssdxdy Tdqdx Ts dx Vdxdy

ie Rdpdy Vdxdy Tdqdx Rs dy Ssdxdy Ts dx

ie Rdpdy Vdxdy Tdqdx s R dy Sdxdy T dx

− + + − − =

− + − − + =

− + − − + =

( )

( ) ( )

( ) ( )
2 2

ween , , ,  and  such that the terms in parenthesis in 3.11  vanish indep

endently then it satisfies both 3.13  and 3.7 . It therefore follows that

                  0                    

x y u p q

R dy Sdxdy T dx− + = ( )

( )

                                       3.14

                  0                                                              3.15

These are refered to as the Monge's subsidiary equatio

Rdpdy Vdxdy Tdqdx− + =

ns.



( )

( )1

2

We now assume that 3.14  is resolvable into factors thus;

               0  
                                                                           3.16
                0    

The fir

dy m dx

dy m dx

− = 


− = 

( ) ( )

( )
1 1

1 1 1

st equation in 3.16  combined with 3.13  and with  will yield an integral of the

form  and  in which  and  are arbitrary constants. Then a relation of the type

                 

du pdx qdy

g a h b a b

h f g

= +

= =

= ( )

( )1

                                                                                    3.17

where  is arbitrary will be an integral. This is called an intermediate first  integral.f



( ) ( )Similarly, second equation in 3.16  combined with 3.13  will give another intermediate integral of the

type

( ) ( )

( ) ( )

2 2 2

2

                                                                                                               3.18

in which  is also arbitrary.

Solving 3.17  and 3.18  we obtain  and  in terms

h f g

f

p q

=

( )

 of  ,  and . These values of  and  are then

substituted in  which on integration yields the required solution.

We however here note that if 3.16  is a perfect square it is convinient in s

x y u p q

du pdx qdy

a

= +

ome cases to compute only

one intermediate integral and integrate it with the help of Lagrange's method to get the complete solution



( )

3.4  GENERAL FORM OF SECOND-ORDER  WITH VARIABLE COEFFICIENTS ADMITTING

        A FIRST INTEGRAL AND ITS SOLUTIONS.

In section 3.3 we saw that a relation of the form

                              

PDE

h f g= ( )                                                                                             3.19

in which  and  are differentiable functions of , , ,  and  and  an arbitrary differentiable functig h x y u p q f

( )

( ) ( )

on

is called a first intermediate integral of a second-order  if the latter is obtained by eliminating  

and   from 3.19  together with the relation obtained by differentiating 3.19  partially wrt  

PDE f

f x and .y



( )

We now discuss the general form of second-order  if admitting first integral and its method of solu-

tion due to Monge.

Differentiating 3.19  partially wrt  and  yields

                  

PDE

x y

h h
p

x u

 
+  +

 
( ) ( )

( ) ( )

           3.20

                                 3.21

h h g g g g
r s f g p r s

p q x u p q

h h h h g g g g
q s t f g q s t

y u p q y u p q

      
 +  = +  +  +  

      

        
+  +  +  = +  +  +  

        

( ) ( ) ( )

( ) ( )2

Eliminating  between 3.20  and 3.21  yields

                                                                                      3.22

f g

Rr Ss Tt U rt s V



+ + + − =



( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

where

, , , , , ,
                   ,  

, , , , , ,

, , ,
                      ,                                                           

, , ,

g h g h g h g h g h g h
R q S q p

p y p u q y q u u p x p

g h g h g h
T p U

x q u q p q

     
= +  = +  +  +
     

  
= +  =
  

( )

( )

( )

( )

( )

( )

( )

( ) ( )

      3.23

, , ,
                      

, , ,

Hence, 3.22  is the most general form of second-order PDE that possesses a first intermediate  integral.

g h g h g h
V p q

y u u x y x








  
=  +  +
   



( )

We thus proceed as in Monge's method for solving equations of this kind by determining the first integral.

Recall that

                                                   3.24

and

 

p p
dp dx dy rdx sdy

x y

 
= + = +
 

( )

( )

                                                  3.25

,

                   and                                  3.26

q q
dq dx dy sdx tdy

x y

ie

dp sdy dq sdx
r t

dx dy

 
= + = +
 

− −
= =



( ) ( )

2

Putting 3.26  into 3.22  we have

                        
dp sdy dq sdx dp sdy dq sdx

R Ss T U Us V
dx dy dx dy

   − − − −   
+ + + − =      

      

( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2

2 2

,

  0

,

  0    3.27

ie

Rdpdy Rs dy Ssdxdy Tdqdx Ts dx U dpdq sdpdx sdqdy s dxdy Vdxdy

ie

Rdpdy Tdqdx Udpdq Vdxdy s R dy Udpdx Udqdy Sdxdy T dx

− + + − + − − + − =

+ + − − + + − + =



( ) ( )
( )2 2

Monge's subsidiary equations are:

                        0 
      3.27

                        0

In view of the presence of the terms  a

M Rdpdy Tdqdx Udpdq Vdxdy
b

N R dy Udpdx Udqdy Sdxdy T dx

Udpdx

= + + − = 


= + + − + = 

( )

nd   cannot be factorized . We may however try

to factorize 

                             0                                                      3.28

  where  is an undetermined multiplier.

Udqdy N

N N

ie





+ =

( ) ( ) ( ) ( )
2 2

,

  0     3.29R dy Udpdx Udqdy Sdxdy T dx Rdpdy Tdqdx Udpdq Vdxdy+ + − + + + + − =



( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2
 0     3.29

Suppose this has factors

1
                          0        3.30    

Comparing 3.29  and 3.30  we obtain

   

R dy Udpdx Udqdy Sdxdy T dx Rdpdy Tdqdx Udpdq Vdxdy

Rdy mTdx Udp dy dx dq
m




 



+ + − + + + + − =

 
+ + + + + = 

 

( ) ( )                                                                          3.31

                                                                                                         3.3

R
mT S V

m

m





+ = − +

= ( )

( )

2

                                                                                                     3.33
R

U



=



( ) ( )

( ) ( )

( )

2 2

1 2

Eliminating  and  from 3.31  through 3.33  we observe that  satisfies the quadratic equation

                           0        3.34

Recall that 3.34  has in general two roots , . Put

m

UV RT US U

 

 

 

+ + + =

( )

( )( ) ( )

( )

1

1

1 1 1 1

2

2 2 2 2

ting  and  in 3.30  we have

                          0        3.35

Similarly, replacing  with   we have

                          

R
m

U

Udy Tdx Udp Udx R dy Udq

Udy Tdx Udp Udx R dy


  

   

 

   

= = =

+ + + + =

+ + + +( ) ( )0        3.36Udq =



( )

1

1 1 1 1 1

2 2 2 2 1 2

We now obtain two integrals of the form  and  by solving the pair  and 

 and integrals of the type  and   obtained from solving the pairs , . Hence, we get the

two int

R
g a h b m

U

g a h b


  

 

= = = = =

= =

( ) ( )1 1 1 2 2 2 1 2egrals of the type  and  where  and  are arbitrary. These are solved to 

determine  and  as functions of ,  and  thereafter substituting into  which when inte-

grated giv

h f g h f g f f

p q x y u du pdx qdy

= =

= +

es the complete solution.



In implementing this procedure we note the following:
( ) ( )1 1 1

1 1 1 1

1    If 3.34  has double roots, it is only possible to obtain one integral of the form  which can

      be obtained from either  or  to give the values of  and  to render  i

h f g

g a h b p q du pdx qdy

=

= = = +

1 2 1 1

1 1

1

nteg-

      rable.

2    Since  we get a more general solution by taking liner relation between and  in the form 

        and integrate by Lagrange's method.

3    If the first integral  

g h

g mh n

h

 =

= +

( ) ( )

( )

1 1 2 2 2

1 1 1 2 2 2 2

 and  and unsolvable for  and  then one of the first integ-

      rals  may be combined with  or  to determine the values of  and  and then

      integrating  

f g h f g p q

h f g g a h b p q

du pdx qdy

= =

= = =

= + ( )to obtain the complete solution integral .



SECTION FOUR 

4.1   BOUNDARY VALUE PROBLEMS

( )

4.1    BOUNDARY CONDITIONS AND BOUNDARY VALUE PROBLEMS.

If a second-order differential equation

                 , , , , , , , 0                                                               x y xx xy yyF x y u u u u u u =           4.1

is to be solved within a specified region  of space in which the values of the dependent variables  are

specified at the boundary  then the resulting problem is refered to as a 

R u

R boundar   . These

boundaries need not enclose a finite volume. In this case one of the boundaries may be at infinity. 

y value problem



( )

A PDE in which one of the independent variables is time, the value of the dependent variable and often

its time derivatives at some instant of time, 0 say  may be given. These type of conditions are ct = alled

 . Hence, the term  and  condtions will be used as appropriate.

We shall concern ourselves here primarily with two ntypes of boundary conditions that arise frequent

initial conditions boundary initial

( )

ly in

the description of physical phenomena and which we encounter frequently in many applications:

 Dirichlet Conditions; where the dependent variable  is specified at each pointof a boundary in a rea u g-

ion. For example at the end of a rectangular region.

                   : , .R a x b c y d   



( ) ( )

( )

 Cauchy Condition; if one of the independent variables is time  and the values of both  and  are

specified on the boundary at time 0 at some initial time  then this condition is refered to as 

u
b t u

t

t ca





=

type.

In applied Mathematics, Physics and Engineering, s generally arise from the mathematical formulat-

ion of the  physical problems. Often, boundary conditions are imposed on the depe

uchy

PDE

real life−

( )

ndent varia-

bles and certain of its derivatives. The process of determining a  subject to the imposed boundary

condition is solving a boundary value proble . It is initial value problem if initia

PDE

BVP l conditions are

imposed on the differential equation.



( )1 2 3 4 1

3.2     . 

This is perhaphs the oldest and commonest method of solving a partial differential equation.

Given the unknown function

                  , , , , ,m m

METHOD OF SEPERATION OF VARIABLE

u u x x x x x x−=     ( )

( ) ( ) ( ) ( )1 2 1 1 1 2 2 3 3 1

                                                                          4 2

we shall on the onset make some fundamental assumptions thus:

that

               , ,m m m mu x x x x X x X x X x X x− −



     =       ( ) ( ) ( )

( ) ( )

1           4 3

in which

                                                                                                                       4 4

m m

k k k

X x

X X x

−  

= 

a function of a single independent variable.



( ) ( ) ( )

( )( )

On substituting 4 3  into 4 1  and simplifying we obtain  ordinary differential equations  in the

unknown functions 1 1 . Some of the boundary conditions of the original  will give rise

to corres

k

ODEs

X k m PDE

 

=

( )( )ponding boundary conditions to be satisfied by some of the functions 1 1 . We will

therefore have to solve  uncoupled ordinary differential equations some of which may be  or .

These particu

kX k m

m BVPs IVPs

=

lar solutions  are then used to constitute the most general solution of the original .kX PDE

( )

Consider the  in two independent variables  and  in the form

                                                                                         4 5

PDE x y

Rr Ss Tt Pp Qq Uu V+ + + + + = 



( )

( ) ( ) ( )

Suppose the solution of 4 5  is given as

                                                                                                                  4 6   

in which   and  are functions of 

u X x Y y

X Y



=  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

  and   respectively and  is the dependent variable. Substituting

4 6  into 4 5  and simplifying we obtain

1 1
                                    4 7  

where   and  are quadratic functi

x y u

f D X x D Y y
X Y

f D D





 

 =  



( )

ons of   and  respectively. We observe that 

the lhs of  4 7  is a function of  only while the rhs is a function of  only and the two can not be equal 

except each is equal to a constant s

D D
x y

x y



 
= =

 



− ( )ay . 



We thus have

( ) ( )

( ) ( )
( )

( ) ( )

                            
                                                               4 8   

                  =  

The solution of 4 5  therefore reduces to the solution of 4 8 .

Th

f D X x X

D Y y Y



 

 = 


  

 

e usefulness of the solutions of  is quite limited because of the difficulty in choosing the approp-

riate arbitrary functions that will satisfy the imposed boundary conditions. This is however elim

PDE

( )

inated for

some class of   by certain techniques one of which is based on the principle of superposit-

ion of solutions. This states that

PDEs linear



( )( )

( )1 1 2 2 1 1 2 2 1 1 2 2

"If  each of the m functions 1 1  satisfies a linear PDE then an arbitrary linear combination

                                               4 9             

k

j j

z k m

Z z z z z z z z      

=

= + + + +      + + = 

( )( )
1

where 1 1 are constants also satisfies the differential equation".The combination of the method 

of seperation of variables and the superposition of solution is usually known as  method.

m

j

k k m

Fourier



=

=





( ) ( ) ( ) ( )

2

2

1  Solve by the method of seperation of variables the differential equation

                2 0

                  Setting , 0               

into the differential

Example

u u u

x yx

Solution

u x y X x Y y i

  
− + =

 

=  

( )

( ) ( )

 equation we have

                  2 0                             

Dividing through by ,  by vitue of  yields

                  2 0                                      

X Y X Y Y X ii

u x y i

X X Y
i

X X Y

   −  + =

  
− + = ( )ii



( ) ( )

( )

,

1
                  2                                     

We observe here that the lhs and rhs of  are functions of  and  respectively. For this equation to be

valid each side must b

ie

Y
X X iv

X Y

iv x y


 − = −

( )e independently equal to a constant say . The implication of  this yields the follo-

wing uncoupled ordinary differential equation:

                  2 0                                  

      

X X X



 − − =
( )

( )
( )

2

   
            + 0                                             

,

                  2 0                                  

                  + 0                                       

v
Y Y

ie

D D X

D Y










 = 

− − =

 =
( )   

      
vi







( )

( ) ( ) ( )
( ) ( )

( )

( ) ( )

The solution of the ordinary differential equations in above are given as 

                   exp 1 1 exp 1 1
     

and              exp

By virtue of  and  therefore we have 

vi

X x A x B x
vii

Y y C y

i vii

 



= + + + − + 


= − 

( ) ( ) ( )( ) ( )                   , exp 1 1 exp 1 1 exp

where  and  are arbitrary constants of integration.

u x y D x E x y

D AC E BC

  = + + + − + −

= =



2
2 2

2

2  Determine the solution to the 3  wave equation

                      

     by method of seperation of variables.

.

Assuming the unknown function  is seperable and of the form 

    

D

u
c u

t

Solution

t

−


 =



( ) ( ) ( ) ( ) ( ) ( )

( )2

                  , , , 0                              

then the partial differential equation yields

                     =                                  

u x y z t X x Y y Z z T t i

c X YZT Y XZT Z XYT T XYZ

=    

  + + ( )  ii



( )2

2

,

                     =                                                        

1
                     =                                              

ie

X Y Z T
c iii

X Y Z T

X Y Z T

X Y Z Tc

   
+ + 

 



  
+ + ( )

( )2 2 2 2

2

              

This equation is true only if each of the component parts is equal to a constant.

,

1
                     , , ,                                 

iv

ie

X Y Z T
p q r s v

X Y Z Tc

  
= − = − = − = −



2

2

2

2 2

This yields the following uncoupled ordinary differential equations:

                     0

                     0

                     0 

                      0        

X p X

Y q Y

Z r Z

T c s T

 + =

 + =

 + =

+ =

( )

( )

( )

( )

( ) ( )

   

                    

with solutions

                    Cos Sin

                    Cos Sin

                    Cos Sin

                    Cos Si

p p p

q q q

r r r

s s s

vi

X x A px B px

Y y C qy D qy

Z z E rz F rz

T t P cs t Q









= +

= +

= +

= + ( )

( )    

n              

vii

cs t











( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 2

Since the parameters , ,  and  are dependent by virture of  we may express  as

                   Cos Sin                        

Hence by vitue of  and  we th

pqr pqr s

p q r s iv T t

T t G p q r t Q p q r t viii

i vii

= + + + + +

( ) ( ) ( ) ( ) ( ) ( )

( )
1 1 1

us have that

                   , , ,                                               

The most general solution is thus given as

                    , , , ,

pqr p q r pqr

pqr pqr

p q r

u x y t t X x Y y Z z T t ix

u x y t t u x
  

= = =

=

= ( ) ( )

( ) ( ) ( )

, ,                                                     

in which the function , , ,  are as defined in  and .   pqr

y t t x

u x y t t vii ix



( ) ( )

( ) ( )

2 2 2
2

2 2 2 2

2 2
2

2 2

4.3   3 -  '      . 

 Cylindrical; , ,  

1 1
             0

 Spherical; , ,  

2 1
             

SOLUTION OF D LAPLACE s EQUATION IN CURVILINEAR COORDINATE SYSTEM

I r z

u u u u
u

r rr r z

II r

u u u
u

r rr r





 

   
 = + + + =

  

  
 = + +



2

2 2 2 2 2

1
0

Sin

In this section we will solve the problem for the shperical coordinate system. The solution for the cylin-

drical coordinate follows the same procedure.

Cot u u

r r



  

 
+ + =

 



( )
2 2 2

2 2 2 2 2 2 2

The corresponding differential equation is given by

2 1 1
             0                

Sin

Assume the unknown function  is seperable in the form

              

u u u Cot u u
i

r rr r r r

u



  

    
+ + + + =

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

  , , 0                                           

Substitution of  into  and dividing through the resuly by , ,  yields

2 1 1
             0      

Sin

u r R r ii

ii i u r

R R Cot

R r R r r r

   

 





=   

      
+ + + + =

  
( )              iii



( )

( )

2 2

2 2

,

2 1
             Sin                 

Observe that the lhs of  are functions of  and  while the rhs is a function of  only. This can only be

valid  if ea

ie

R R Cot
r iv

R r R r r

iv r




 

       
+ + + = − 

   

( )

( ) ( )

2

2

2
2

2

ch side is a constant , say. Therefore, we have that

              0                                                                          

1 1
              2  

Sin

m

m v

m
r R rR Cot

R




 +  =

   + +  +  =


( )                       vi



( ) ( ) ( )

( ) ( )

2
2

2

,

1 1
              2                         

Sin

Eqn  is true if only each side is a constant 1 .This condition gives rise to the following 

ie

m
Cot r R rR vii

R

vii l l




    +  − = − +


− +

( ) ( )

( )

2

2

2
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Eqn  is associated Legendre differential equation.
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 Cylindrical; , ,  

1 1 1
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2
             

SOLUTION OF THE D WAVE EQUATIONS IN CURVILINEAR COORDINATE SYSTEM
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In this section we will solve the problem for the  cylindrical coordinate system, the the shperical case

follows the same procedure.

u u Cot u u u

r r r r c t



  

   
+ + + =

   



( )

( )
2 2 2 2

2 2 2 2 2 2

Solution.

We recall that the governing eqution in the coordinate system , ,  is given as 
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Eqn  is the Bessel's differential equation.
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4 Obtain the solution of the transverse vibration of a thin membrane bounded by a circle of radius  desc-
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From the initial condition we have
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Therefore,  is the solution for radially symmetric wave with coefficients defined in  and .
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Characteristic Mapping Method for  Incompressible Euler Equations

The characteristic mapping method is a method for 
solving linear advection problems with arbitrary initial 
conditions. Its unique property is the decoupling of the 
computational and solution representation grids, thus 
allowing small length scales to be accurately 
represented in the solution with overall low 
computational cost.



Linear Advection Equation
Advection is the process of transport of quantities 
in a velocity Field.The quantities could be properties 
of fluids such as mass or momentum or a general 
macroscopic quantity like trac density. The velocity 
field could be a constant  or a function of space and 
time. The following partial differential equation 
describes the phenomenon:
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