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Introduction

Figure: Velocity boundary layer in fluid mechanics.1

1 https://help.altair.com/hwcfdsolvers/acusolve
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Introduction

Other examples of singularly perturbed problems (ε > 0 is a small parameter):

Convection-diffusion-reaction problem
{

−ε∆uε + b(x , uε) · ∇uε + f (x , uε) = 0, x ∈ Ω

uε(x) = 0, x ∈ ∂Ω.

Problem of a thin beam
{

εu(4)
ε − u

′′
ε = λ2

uε, 0 < x < 1

uε(0) = uε(1) = u
′
ε(0) = u

′
ε(1) = 0.
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Singular perturbations

We consider a family of perturbation problems with a small parameter ε:

Pε(x , u
ε, ∂xu

ε, · · · ; ε) = 0.

Formally, when ε → 0, we have the following limit problem:

P0(x , u
0, ∂xu

0, · · · ) = 0.
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Singular perturbations

We consider a family of perturbation problems with a small parameter ε:

Pε(x , u
ε, ∂xu

ε, · · · ; ε) = 0.

Formally, when ε → 0, we have the following limit problem:

P0(x , u
0, ∂xu

0, · · · ) = 0.

Definition (Singular perturbation)

Let P be a differential operator in R
n, n ≥ 1, in the form,

P(x,D) =
∑

|α|≤m

aα(x)D
α, aα ̸= 0 for some |α| = m,

where we use multi-index notation. deg(P) = m.

deg (P0) < deg (Pε): singular perturbation problems

deg (P0) = deg (Pε): regular perturbation problems
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Examples

{

−u
′′
ε + εuε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
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Examples

{

−u
′′
ε + εuε = f , 0 < x < 1,

uε(0) = uε(1) = 0.

{

−εu
′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
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Examples
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Reaction-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(1)
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Reaction-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(1)

Variational formulation:










Find uε ∈ H
1
0 (0, 1) such that ∀v ∈ H

1
0 (0, 1),

ε

∫ 1

0

u
′
εv

′ +

∫ 1

0

uεv =

∫ 1

0

fv .
(2)
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Reaction-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(1)

Variational formulation:










Find uε ∈ H
1
0 (0, 1) such that ∀v ∈ H

1
0 (0, 1),

ε

∫ 1

0

u
′
εv

′ +

∫ 1

0

uεv =

∫ 1

0

fv .
(2)

There exists a unique solution uε ∈ H1
0 (0, 1) of (2) using the Lax-Milgram theorem. We

are interested in the limit when ε → 0.
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Reaction-diffusion equations in 1D
Convergence by energy methods and weak convergence

Theorem

The solution uε of (1) converges in L2(0, 1), when ε → 0, to u0 = f .

Proof.

By taking v = uε in (2) and using Cauchy-Schwarz, we obtain

ε∥u′
ε
∥2L2(0,1) + ∥uε∥2L2(0,1) =

∫ 1

0
fuε ≤ ∥f ∥L2(0,1)∥uε∥L2(0,1) ≤

1

2
∥f ∥2L2(0,1) +

1

2
∥uε∥2L2(0,1).
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Reaction-diffusion equations in 1D
Convergence by energy methods and weak convergence

Theorem

The solution uε of (1) converges in L2(0, 1), when ε → 0, to u0 = f .

Proof.

By taking v = uε in (2) and using Cauchy-Schwarz, we obtain

ε∥u′
ε
∥2L2(0,1) + ∥uε∥2L2(0,1) =

∫ 1

0
fuε ≤ ∥f ∥L2(0,1)∥uε∥L2(0,1) ≤

1

2
∥f ∥2L2(0,1) +

1

2
∥uε∥2L2(0,1).

Thus

ε∥u′
ε
∥2L2(0,1) + ∥uε∥2L2(0,1) ≤ ∥f ∥2L2(0,1).

It follows that
√
εu′

ε
and uε are bounded in L2(0, 1) independently of ε. There exists a subsequence

ε
′ → 0 and u0 ∈ L2(0, 1) such that

uε′ ⇀ u0 in L2(0, 1).
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ε
∥2L2(0,1) + ∥uε∥2L2(0,1) ≤ ∥f ∥2L2(0,1).

It follows that
√
εu′

ε
and uε are bounded in L2(0, 1) independently of ε. There exists a subsequence

ε
′ → 0 and u0 ∈ L2(0, 1) such that

uε′ ⇀ u0 in L2(0, 1).

Passing to the limit in (2), we obtain ∀v ∈ H1
0 (0, 1),

∫ 1
0 u0v =

∫ 1
0 fv . By density of H1

0 (0, 1) in
L2(0, 1), the equality holds for every v ∈ L2(0, 1) and u0 = f in L2(0, 1).
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and uε are bounded in L2(0, 1) independently of ε. There exists a subsequence

ε
′ → 0 and u0 ∈ L2(0, 1) such that

uε′ ⇀ u0 in L2(0, 1).

Passing to the limit in (2), we obtain ∀v ∈ H1
0 (0, 1),

∫ 1
0 u0v =

∫ 1
0 fv . By density of H1

0 (0, 1) in
L2(0, 1), the equality holds for every v ∈ L2(0, 1) and u0 = f in L2(0, 1).
We can show that the weak convergence is valid for the whole sequence ε → 0. It follows

ε
∥

∥u′
ε

∥

∥

2

L2(0,1)
+ ∥uε − u0∥2L2(0,1) = (f , uε)− 2 (uε, u0) + ∥u0∥2L2(0,1)

→ (f , u0)− ∥u0∥2L2(0,1) = 0,

hence the strong convergence in L2(0, 1).
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Reaction-diffusion equations in 1D
Thickness of the boundary layer, approximate solution, approximate correctors

Remark
The limit solution does not satisfy the same boundary conditions as uε if f (0) ̸= 0 or
f (1) ̸= 0. For instance, if f ∈ H1(0, 1) but not in H1

0 (0, 1) then uε(0) = 0 ↛ u0(0) or
uε(1) = 0 ↛ u0(1). Since H1(0, 1) ↪→ C 0([0, 1]), uε ↛ u0 in H1(0, 1).
The most important difference between uε and u0 is thus localized in a thin part of the
domain, and we expect sharp transitions of uε at the boundaries which lead to the
so-called boundary layers.
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Remark
The limit solution does not satisfy the same boundary conditions as uε if f (0) ̸= 0 or
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The most important difference between uε and u0 is thus localized in a thin part of the
domain, and we expect sharp transitions of uε at the boundaries which lead to the
so-called boundary layers.

An approximation of the solution is given by

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(3)

where 0 ≤ η0, η1 ≪ 1, θl,r (ξ) →
ξ→∞

0 and dk

dξk
θl,r (ξ) →

ξ→∞
0.
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Reaction-diffusion equations in 1D
Thickness of the boundary layer, approximate solution, approximate correctors

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(4)
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Reaction-diffusion equations in 1D
Thickness of the boundary layer, approximate solution, approximate correctors

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(4)

Near x = 0, we neglect θr :

u
′′
ε (x) ≈ u

′′
0 (x) +

1

η2
0

(θl)′′
(

x

η0

)
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uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(4)

Near x = 0, we neglect θr :

u
′′
ε (x) ≈ u

′′
0 (x) +

1

η2
0

(θl)′′
(

x

η0

)

Thus, the equation (1) becomes

−εu′′
0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

+ u0(x) + θl
(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

+ θl
(

x

η0

)

= 0
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uε(x) ≈ u0(x) + θl
(

x

η0

)
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(1− x

η1

)

(4)

Near x = 0, we neglect θr :

u
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0 (x) +

1

η2
0

(θl)′′
(

x

η0

)
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0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

+ u0(x) + θl
(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

+ θl
(

x

η0

)

= 0

Interesting choice: η0 =
√
ε. Then θl(ξ) = A+e

ξ + A−e
−ξ = A−e

−ξ. (θl (ξ) →
ξ→∞

0)
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Near x = 1, we neglect θl . Similarly, we get

− ε

η2
1

(θr )′′
(1− x

η1

)

+ θr
(1− x

η1

)

= 0

Interesting choice: η1 =
√
ε. Then θr (ξ) = B+e

ξ + B−e
−ξ = B−e

−ξ.
From uε(1) = 0, we get B− = −u0(1).
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Reaction-diffusion equations in 1D
Thickness of the boundary layer, approximate solution, corrector

An approximation of the solution is given by

uε(x) ≈ u0(x) + θl
(

x√
ε

)

+ θr
(1− x√

ε

)

(5)

where the approximate correctors near x = 0 and x = 1 are given by

θl
(

x√
ε

)

= −u0(0)e
− x√

ε , θr
(1− x√

ε

)

= −u0(1)e
− 1−x√

ε (6)
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Reaction-diffusion equations in 1D
Thickness of the boundary layer, approximate solution, corrector

An approximation of the solution is given by

uε(x) ≈ u0(x) + θl
(

x√
ε

)

+ θr
(1− x√

ε

)

(5)

where the approximate correctors near x = 0 and x = 1 are given by

θl
(

x√
ε

)

= −u0(0)e
− x√

ε , θr
(1− x√

ε

)

= −u0(1)e
− 1−x√

ε (6)

We localize the approximate correctors near the corresponding boundary, by introducing
a smooth cut-off function σ such that σ(x) = 1 in [0, 1/4] and supp(σ) = [0, 1/2] and
define the corrector

θε(x) = θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x). (7)
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Reaction-diffusion equations in 1D
Error function

We are interested in the error function wε = uε − (u0 + θε).
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Reaction-diffusion equations in 1D
Error function

We are interested in the error function wε = uε − (u0 + θε).
Note that

{

−εθ′′ε + θε = Rε, 0 < x < 1,

θε = −u0, at x = 0, 1
(8)

where

Rε(x) = −εθl
(

x√
ε

)

σ′′(x)− 2ε
1√
ε
(θl)′

(

x√
ε

)

σ′(x)− ε
1

ε
(θl)′′

(

x√
ε

)

σ(x)

− εθr
(1− x√

ε

)

σ′′(1− x)− 2ε
1√
ε
(θr )′

(1− x√
ε

)

σ′(1− x)− ε
1

ε
(θr )′′

(1− x√
ε

)

σ(1− x)

+ θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x)

=− εθl
(

x√
ε

)

σ′′(x)− 2ε
1√
ε
(θl)′

(

x√
ε

)

σ′(x)

− εθr
(1− x√

ε

)

σ′′(1− x)− 2ε
1√
ε
(θr )′

(1− x√
ε

)

σ′(1− x).
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Reaction-diffusion equations in 1D
Error function

We are interested in the error function wε = uε − (u0 + θε).
Note that

{

−εθ′′ε + θε = Rε, 0 < x < 1,

θε = −u0, at x = 0, 1
(8)

where

Rε(x) = −εθl
(

x√
ε

)

σ′′(x)− 2ε
1√
ε
(θl)′

(

x√
ε

)

σ′(x)− ε
1

ε
(θl)′′

(

x√
ε

)

σ(x)

− εθr
(1− x√

ε

)

σ′′(1− x)− 2ε
1√
ε
(θr )′

(1− x√
ε

)

σ′(1− x)− ε
1

ε
(θr )′′

(1− x√
ε

)

σ(1− x)

+ θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x)

=− εθl
(

x√
ε

)

σ′′(x)− 2ε
1√
ε
(θl)′

(

x√
ε

)

σ′(x)

− εθr
(1− x√

ε

)

σ′′(1− x)− 2ε
1√
ε
(θr )′

(1− x√
ε

)

σ′(1− x).

Estimate of the remainder :

Since σ′ = σ′′ = 0 near x = 0 and x = 1 and e
− δ√

ε

εn
→ 0 for δ > 0, we obtain

∥Rε∥L2(0,1) ≤ Cεn.
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Reaction-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε + wε = εu′′

0 − Rε = εf ′′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(9)
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Reaction-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε + wε = εu′′

0 − Rε = εf ′′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(9)

Multiplying by wε and integrating by parts, we obtain (assuming f ′′ ∈ L2)

ε∥w ′
ε∥2L2(0,1) + ∥wε∥2L2(0,1) ≤ ε∥f ′′∥L2(0,1)∥wε∥L2(0,1) + ∥Rε∥L2(0,1)∥wε∥L2(0,1)

≤ Cε∥wε∥L2(0,1)

≤ C 2

2
ε2 +

1

2
∥wε∥2L2(0,1)
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Reaction-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε + wε = εu′′

0 − Rε = εf ′′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(9)

Multiplying by wε and integrating by parts, we obtain (assuming f ′′ ∈ L2)

ε∥w ′
ε∥2L2(0,1) + ∥wε∥2L2(0,1) ≤ ε∥f ′′∥L2(0,1)∥wε∥L2(0,1) + ∥Rε∥L2(0,1)∥wε∥L2(0,1)

≤ Cε∥wε∥L2(0,1)

≤ C 2

2
ε2 +

1

2
∥wε∥2L2(0,1)

hence

ε∥w ′
ε∥2L2(0,1) + ∥wε∥2L2(0,1) ≤ Cε2.
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Reaction-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε + wε = εu′′

0 − Rε = εf ′′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(9)

Multiplying by wε and integrating by parts, we obtain (assuming f ′′ ∈ L2)

ε∥w ′
ε∥2L2(0,1) + ∥wε∥2L2(0,1) ≤ ε∥f ′′∥L2(0,1)∥wε∥L2(0,1) + ∥Rε∥L2(0,1)∥wε∥L2(0,1)

≤ Cε∥wε∥L2(0,1)

≤ C 2

2
ε2 +

1

2
∥wε∥2L2(0,1)

hence

ε∥w ′
ε∥2L2(0,1) + ∥wε∥2L2(0,1) ≤ Cε2.

It follows, since wε ∈ H1
0 (0, 1), that

∥wε∥L2(0,1) ≤ Cε.

∥wε∥H1(0,1) ≤ C
√
ε.
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Reaction-diffusion equations in 1D

Theorem

Assume that f ∈ H2(0, 1). Let uε, u0 be the solutions of

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0,
(10)

and
{

uε = f , 0 < x < 1,

without boundary conditions,
(11)

respectively and θε be defined in (7). Then there exists a constant C > 0 independent

of ε such that
∥uε − (u0 + θε)∥L2(0,1) ≤ Cε,

∥uε − (u0 + θε)∥H1(0,1) ≤ C
√
ε.
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Reaction-diffusion equations in 1D

Theorem

Assume that f ∈ H2(0, 1). Let uε, u0 be the solutions of

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0,
(10)

and
{

uε = f , 0 < x < 1,

without boundary conditions,
(11)

respectively and θε be defined in (7). Then there exists a constant C > 0 independent

of ε such that
∥uε − (u0 + θε)∥L2(0,1) ≤ Cε,

∥uε − (u0 + θε)∥H1(0,1) ≤ C
√
ε.

Remark
We can show the same result for the approximation using approximate correctors, i.e.

replacing θε by θl
(

x√
ε

)

+ θr
(

1−x√
ε

)

.
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Convection-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(12)
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Convection-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(12)

Variational formulation:










Find uε ∈ H
1
0 (0, 1) such that ∀v ∈ H

1
0 (0, 1),

ε

∫ 1

0

u
′
εv

′ −
∫ 1

0

u
′
εv =

∫ 1

0

fv .
(13)
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Convection-diffusion equations in 1D

Let f ∈ L2(0, 1), we consider the following model problem:

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(12)

Variational formulation:










Find uε ∈ H
1
0 (0, 1) such that ∀v ∈ H

1
0 (0, 1),

ε

∫ 1

0

u
′
εv

′ −
∫ 1

0

u
′
εv =

∫ 1

0

fv .
(13)

There exists a unique solution uε ∈ H1
0 (0, 1) of (13) using the Lax-Milgram theorem.

We are interested in the limit when ε → 0.
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Convection-diffusion equations in 1D

Formally, the limit problem is obtained by setting ε = 0:

−u
′
0 = f , 0 < x < 1. (14)
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Convection-diffusion equations in 1D

Formally, the limit problem is obtained by setting ε = 0:

−u
′
0 = f , 0 < x < 1. (14)

Since it is a first-order PDE (transport equation), we need to impose one boundary
condition, but on which boundary?
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Convection-diffusion equations in 1D

Let us assume the following ansatz for the approximation:

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(15)
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Convection-diffusion equations in 1D

Let us assume the following ansatz for the approximation:

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(15)

Near x = 0, we neglect θr , thus the equation becomes

−εu′′
0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

− u
′
0(x)−

1

η0
(θl)′

(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

− 1

η0
(θl)′

(

x

η0

)

= 0
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Convection-diffusion equations in 1D

Let us assume the following ansatz for the approximation:

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(15)

Near x = 0, we neglect θr , thus the equation becomes

−εu′′
0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

− u
′
0(x)−

1

η0
(θl)′

(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

− 1

η0
(θl)′

(

x

η0

)

= 0

Interesting choice : η0 = ε. Then θl(ξ) = A0 + A−e
−ξ = A−e

−ξ.
From uε(0) = 0, we get A− = −u0(0).
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Convection-diffusion equations in 1D

Let us assume the following ansatz for the approximation:

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(15)

Near x = 0, we neglect θr , thus the equation becomes

−εu′′
0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

− u
′
0(x)−

1

η0
(θl)′

(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

− 1

η0
(θl)′

(

x

η0

)

= 0

Interesting choice : η0 = ε. Then θl(ξ) = A0 + A−e
−ξ = A−e

−ξ.
From uε(0) = 0, we get A− = −u0(0).

Near x = 1, we neglect θl . Similarly, we get

− ε

η2
1

(θr )′′
(1− x

η1

)

+
1

η1
(θr )′

(1− x

η1

)

= 0
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Convection-diffusion equations in 1D

Let us assume the following ansatz for the approximation:

uε(x) ≈ u0(x) + θl
(

x

η0

)

+ θr
(1− x

η1

)

(15)

Near x = 0, we neglect θr , thus the equation becomes

−εu′′
0 (x)−

ε

η2
0

(θl)′′
(

x

η0

)

− u
′
0(x)−

1

η0
(θl)′

(

x

η0

)

≈ f

− ε

η2
0

(θl)′′
(

x

η0

)

− 1

η0
(θl)′

(

x

η0

)

= 0

Interesting choice : η0 = ε. Then θl(ξ) = A0 + A−e
−ξ = A−e

−ξ.
From uε(0) = 0, we get A− = −u0(0).

Near x = 1, we neglect θl . Similarly, we get

− ε

η2
1

(θr )′′
(1− x

η1

)

+
1

η1
(θr )′

(1− x

η1

)

= 0

Interesting choice : η1 = ε. Then θr (ξ) = B0 + B+e
ξ = 0.

→ No boundary layer at x = 1.
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Convection-diffusion equations in 1D

The limit problem is

{

−u
′
0 = f , 0 < x < 1

u0(1) = 0, at x = 1.
(16)
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Convection-diffusion equations in 1D

An approximation of the solution is given by

uε(x) ≈ u0(x) + θ
(

x

ε

)

(17)

where the approximate corrector near x = 0 is given by

θ
(

x

ε

)

= −u0(0)e
− x

ε . (18)
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Convection-diffusion equations in 1D

An approximation of the solution is given by

uε(x) ≈ u0(x) + θ
(

x

ε

)

(17)

where the approximate corrector near x = 0 is given by

θ
(

x

ε

)

= −u0(0)e
− x

ε . (18)

We localize the approximate corrector near the corresponding boundary, by introducing a
smooth cut-off function σ such that σ(x) = 1 in [0, 1/4] and supp(σ) = [0, 1/2] and
define the corrector

θε(x) = θ
(

x

ε

)

σ(x). (19)
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Convection-diffusion equations in 1D

We are interested in the error function wε = uε − (u0 + θε).
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Convection-diffusion equations in 1D

We are interested in the error function wε = uε − (u0 + θε).
Note that











−εθ′′ε − θ′ε = Rε, 0 < x < 1,

θε(0) = −u0(0) at x = 0

θε(1) = 0 = −u0(1) at x = 1

(20)

where

Rε(x) =− εθ
(

x

ε

)

σ′′(x)− 2ε
1

ε
θ′
(

x

ε

)

σ′(x)− ε
1

ε2
θ′′

(

x

ε

)

σ(x)

− θ
(

x

ε

)

σ′(x)− 1

ε
θ′
(

x

ε

)

σ(x)

=− εθ
(

x

ε

)

σ′′(x)− 2ε
1

ε
θ′
(

x

ε

)

σ′(x)− θ
(

x

ε

)

σ′(x)
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Convection-diffusion equations in 1D

We are interested in the error function wε = uε − (u0 + θε).
Note that











−εθ′′ε − θ′ε = Rε, 0 < x < 1,

θε(0) = −u0(0) at x = 0

θε(1) = 0 = −u0(1) at x = 1

(20)

where

Rε(x) =− εθ
(

x

ε

)

σ′′(x)− 2ε
1

ε
θ′
(

x

ε

)

σ′(x)− ε
1

ε2
θ′′

(

x

ε

)

σ(x)

− θ
(

x

ε

)

σ′(x)− 1

ε
θ′
(

x

ε

)

σ(x)

=− εθ
(

x

ε

)

σ′′(x)− 2ε
1

ε
θ′
(

x

ε

)

σ′(x)− θ
(

x

ε

)

σ′(x)

Estimate of the remainder :

Since σ′ = σ′′ = 0 near x = 0 and e
− δ

ε

εn
→ 0 for δ > 0, we obtain

∥Rε∥L2(0,1) ≤ Cεn.
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Convection-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε − w

′
ε = εu′′

0 − Rε = −εf ′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(21)
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Convection-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε − w

′
ε = εu′′

0 − Rε = −εf ′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(21)

Since multiplying by wε and integrating by parts removes the term
∫ 1

0
w ′

εwε = 0, we

multiply by exwε instead, we obtain (assuming f ′ ∈ L2)

−ε

∫ 1

0

w
′′
ε wεe

x −
∫ 1

0

w
′
εwεe

x = −ε

∫ 1

0

f
′
wεe

x −
∫ 1

0

Rεwεe
x

ε

∫ 1

0

w
′
ε(wεe

x)′ +

∫ 1

0

w 2
ε

2
e
x = . . .

ε

∫ 1

0

(w ′
ε)

2
e
x + ε

∫ 1

0

w
′
εwεe

x +

∫ 1

0

w 2
ε

2
e
x = . . .

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ ε∥f ′∥L2(0,1)∥wεe

x∥L2(0,1) + ∥Rε∥L2(0,1)∥wεe
x∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ Cε∥wε∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ C

2ε2 +
1

4
∥wε∥2L2(0,1)
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Convection-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε − w

′
ε = εu′′

0 − Rε = −εf ′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(21)

Since multiplying by wε and integrating by parts removes the term
∫ 1

0
w ′

εwε = 0, we

multiply by exwε instead, we obtain (assuming f ′ ∈ L2)

−ε

∫ 1

0

w
′′
ε wεe

x −
∫ 1

0

w
′
εwεe

x = −ε

∫ 1

0

f
′
wεe

x −
∫ 1

0

Rεwεe
x

ε

∫ 1

0

w
′
ε(wεe

x)′ +

∫ 1

0

w 2
ε

2
e
x = . . .

ε

∫ 1

0

(w ′
ε)

2
e
x + ε

∫ 1

0

w
′
εwεe

x +

∫ 1

0

w 2
ε

2
e
x = . . .

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ ε∥f ′∥L2(0,1)∥wεe

x∥L2(0,1) + ∥Rε∥L2(0,1)∥wεe
x∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ Cε∥wε∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ C

2ε2 +
1

4
∥wε∥2L2(0,1)

hence

ε∥w ′
ε∥2L2(0,1) +

1− 2ε

4
∥wε∥2L2(0,1) ≤ Cε2.
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Convection-diffusion equations in 1D
Error function

We deduce
{

−εw ′′
ε − w

′
ε = εu′′

0 − Rε = −εf ′ − Rε, 0 < x < 1,

wε = 0, at x = 0, 1
(21)

Since multiplying by wε and integrating by parts removes the term
∫ 1

0
w ′

εwε = 0, we

multiply by exwε instead, we obtain (assuming f ′ ∈ L2)

−ε

∫ 1

0

w
′′
ε wεe

x −
∫ 1

0

w
′
εwεe

x = −ε

∫ 1

0

f
′
wεe

x −
∫ 1

0

Rεwεe
x

ε

∫ 1

0

w
′
ε(wεe

x)′ +

∫ 1

0

w 2
ε

2
e
x = . . .

ε

∫ 1

0

(w ′
ε)

2
e
x + ε

∫ 1

0

w
′
εwεe

x +

∫ 1

0

w 2
ε

2
e
x = . . .

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ ε∥f ′∥L2(0,1)∥wεe

x∥L2(0,1) + ∥Rε∥L2(0,1)∥wεe
x∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ Cε∥wε∥L2(0,1)

ε∥w ′
ε∥2L2(0,1) +

1− ε

2
∥wε∥2L2(0,1) ≤ C

2ε2 +
1

4
∥wε∥2L2(0,1)

hence

ε∥w ′
ε∥2L2(0,1) +

1− 2ε

4
∥wε∥2L2(0,1) ≤ Cε2.

It follows, since wε ∈ H1
0 (0, 1) and ε ≪ 1, that

∥wε∥L2(0,1) ≤ Cε.

∥wε∥H1(0,1) ≤ C
√
ε.
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Convection-diffusion equations in 1D

Theorem

Assume that f ∈ H1(0, 1). Let uε, u0 be the solutions of

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0,
(22)

and
{

−u
′
0 = f , 0 < x < 1,

u0(1) = 0,
(23)

respectively and θε be defined in (19). Then there exists a constant C > 0 independent

of ε such that
∥uε − (u0 + θε)∥L2(0,1) ≤ Cε,

∥uε − (u0 + θε)∥H1(0,1) ≤ C
√
ε.
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Convection-diffusion equations in 1D

Theorem

Assume that f ∈ H1(0, 1). Let uε, u0 be the solutions of

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0,
(22)

and
{

−u
′
0 = f , 0 < x < 1,

u0(1) = 0,
(23)

respectively and θε be defined in (19). Then there exists a constant C > 0 independent

of ε such that
∥uε − (u0 + θε)∥L2(0,1) ≤ Cε,

∥uε − (u0 + θε)∥H1(0,1) ≤ C
√
ε.

Remark
We can show the same result for the approximation using the approximate corrector, i.e.
replacing θε by θ

(

x
ε

)

.
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Other model problems in 1D

Let f ∈ L2(0, 1), we consider the following model problem:2

{

−εu(4)
ε + u

′
ε = f , 0 < x < 1,

uε(0) = u
′
ε(0) = uε(1) = u

′
ε(1) = 0.

(24)

2Couches limites en Océanographie - Anne-Laure Dalibard - Une question, un
chercheur (2019) : https://www.carmin.tv/fr/speakers/anne-laure-dalibard
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Other model problems in 1D

Let f ∈ L2(0, 1), we consider the following model problem:2

{

−εu(4)
ε + u

′
ε = f , 0 < x < 1,

uε(0) = u
′
ε(0) = uε(1) = u

′
ε(1) = 0.

(24)

Variational formulation:










Find uε ∈ H
2
0 (0, 1) such that ∀v ∈ H

2
0 (0, 1),

−ε

∫ 1

0

u
′′
ε v

′′ +

∫ 1

0

u
′
εv =

∫ 1

0

fv .
(25)
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Other model problems in 1D

Let f ∈ L2(0, 1), we consider the following model problem:2

{

−εu(4)
ε + u

′
ε = f , 0 < x < 1,

uε(0) = u
′
ε(0) = uε(1) = u

′
ε(1) = 0.

(24)

Variational formulation:










Find uε ∈ H
2
0 (0, 1) such that ∀v ∈ H

2
0 (0, 1),

−ε

∫ 1

0

u
′′
ε v

′′ +

∫ 1

0

u
′
εv =

∫ 1

0

fv .
(25)

There exists a unique solution uε ∈ H2
0 (0, 1) of (25) using the Lax-Milgram theorem.

We are interested in the limit when ε → 0.
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Other model problems in 1D

Let f ∈ L2(0, 1), we consider the following model problem:2

{

−εu(4)
ε + u

′
ε = f , 0 < x < 1,

uε(0) = u
′
ε(0) = uε(1) = u

′
ε(1) = 0.

(24)

Variational formulation:










Find uε ∈ H
2
0 (0, 1) such that ∀v ∈ H

2
0 (0, 1),

−ε

∫ 1

0

u
′′
ε v

′′ +

∫ 1

0

u
′
εv =

∫ 1

0

fv .
(25)

There exists a unique solution uε ∈ H2
0 (0, 1) of (25) using the Lax-Milgram theorem.

We are interested in the limit when ε → 0.

Exercice
Establish the limit problem and a convergence result using the boundary layer approach.
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Overview

1 Singular perturbations: examples and concepts

2 Singular perturbations: asymptotic expansions

3 Penalization method for Dirichlet boundary conditions
→ Blackboard

4 Penalization method for Neumann or Robin boundary conditions
→ Notes
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Asymptotic expansions
Reaction-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x) (26)
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Asymptotic expansions
Reaction-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x) (26)

u0 + θε: zeroth order approximation at order ε0
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Asymptotic expansions
Reaction-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x) (26)

u0 + θε: zeroth order approximation at order ε0

u0: zeroth order outer solution
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Asymptotic expansions
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An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x) (26)

u0 + θε: zeroth order approximation at order ε0

u0: zeroth order outer solution

θε: zeroth order inner solution
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Asymptotic expansions
Reaction-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θl
(

x√
ε

)

σ(x) + θr
(1− x√

ε

)

σ(1− x) (26)

u0 + θε: zeroth order approximation at order ε0

u0: zeroth order outer solution

θε: zeroth order inner solution

We generalize the asymptotic expansions in powers of ε:

uε(x) ≈
∞
∑

j=0

εj
(

uj + θj,ε
)

≈
∞
∑

j=0

εj
(

uj(x) + θlj

(

x√
ε

)

+ θrj

(1− x√
ε

))

(27)

where θl,rj (ξ) →
ξ→∞

0 and dk

dξk
θl,rj (ξ) →

ξ→∞
0.
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f

{

−(θl0)
′′ + θl0 = 0

θl0(0) = −u0(0)

{

−(θr0)
′′ + θr0 = 0

θr0(0) = −u0(1)
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f

{

−(θl0)
′′ + θl0 = 0

θl0(0) = −u0(0)

{

−(θr0)
′′ + θr0 = 0

θr0(0) = −u0(1)

Order εj , j ≥ 1: −u′′
j−1 − (θlj )

′′(ξl)− (θrj )
′′(ξr ) + uj(x) + θlj (ξl) + θrj (ξr ) = 0
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f

{

−(θl0)
′′ + θl0 = 0

θl0(0) = −u0(0)

{

−(θr0)
′′ + θr0 = 0

θr0(0) = −u0(1)

Order εj , j ≥ 1: −u′′
j−1 − (θlj )

′′(ξl)− (θrj )
′′(ξr ) + uj(x) + θlj (ξl) + θrj (ξr ) = 0

uj = u
′′
j−1 = f

(2j)
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f

{

−(θl0)
′′ + θl0 = 0

θl0(0) = −u0(0)

{

−(θr0)
′′ + θr0 = 0

θr0(0) = −u0(1)

Order εj , j ≥ 1: −u′′
j−1 − (θlj )

′′(ξl)− (θrj )
′′(ξr ) + uj(x) + θlj (ξl) + θrj (ξr ) = 0

uj = u
′′
j−1 = f

(2j)

{

−(θlj )
′′ + θlj = 0

θlj (0) = −uj(0)

{

−(θrj )
′′ + θrj = 0

θrj (0) = −uj(1)
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Asymptotic expansions
Reaction-diffusion equation

We substitute in the reaction-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε
(θ

l
j )
′′
( x
√
ε

)

+
1

ε
(θ

r
j )

′′
( 1 − x

√
ε

)))

+
∞
∑

j=0

ε
j
(

uj (x) + θ
l
j

( x
√
ε

)

+ θ
r
j

( 1 − x
√
ε

))

= f

Order ε0: −(θl0)
′′(ξl)− (θr0)

′′(ξr ) + u0(x) + θl0(ξl) + θr0(ξr ) = f

u0 = f

{

−(θl0)
′′ + θl0 = 0

θl0(0) = −u0(0)

{

−(θr0)
′′ + θr0 = 0

θr0(0) = −u0(1)

Order εj , j ≥ 1: −u′′
j−1 − (θlj )

′′(ξl)− (θrj )
′′(ξr ) + uj(x) + θlj (ξl) + θrj (ξr ) = 0

uj = u
′′
j−1 = f

(2j)

{

−(θlj )
′′ + θlj = 0

θlj (0) = −uj(0)

{

−(θrj )
′′ + θrj = 0

θrj (0) = −uj(1)

We obtain θlj (ξl) = −uj(0)e
−ξl and θrj (ξr ) = −uj(1)e

−ξr .
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Asymptotic expansions
Reaction-diffusion equation

We localize the approximate correctors and define the correctors

θj,ε(x) = θlj

(

x√
ε

)

σ(x) + θrj

(1− x√
ε

)

σ(1− x)
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Asymptotic expansions
Reaction-diffusion equation

We localize the approximate correctors and define the correctors

θj,ε(x) = θlj

(

x√
ε

)

σ(x) + θrj

(1− x√
ε

)

σ(1− x)

and

uεn =
n

∑

j=0

εjuj , θεn =
n

∑

j=0

εjθj,ε.
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Asymptotic expansions
Reaction-diffusion equation

We localize the approximate correctors and define the correctors

θj,ε(x) = θlj

(

x√
ε

)

σ(x) + θrj

(1− x√
ε

)

σ(1− x)

and

uεn =
n

∑

j=0

εjuj , θεn =
n

∑

j=0

εjθj,ε.

The error function at order n is

wn,ε = uε − (uεn + θεn).
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Asymptotic expansions
Reaction-diffusion equation

We localize the approximate correctors and define the correctors

θj,ε(x) = θlj

(

x√
ε

)

σ(x) + θrj

(1− x√
ε

)

σ(1− x)

and

uεn =
n

∑

j=0

εjuj , θεn =
n

∑

j=0

εjθj,ε.

The error function at order n is

wn,ε = uε − (uεn + θεn).

We are going to write the equation satisfied by wn,ε in order to deduce an error estimate
with respect to ε.
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Asymptotic expansions
Reaction-diffusion equation

We write the equation satisfied by each term:

u0 = f

−u
′′
j−1 + uj = 0

=⇒ −εu′′
εn + uεn = f − εn+1

un+1 = f − εn+1
f
(2(n+1))
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Asymptotic expansions
Reaction-diffusion equation

We write the equation satisfied by each term:

u0 = f

−u
′′
j−1 + uj = 0

=⇒ −εu′′
εn + uεn = f − εn+1

un+1 = f − εn+1
f
(2(n+1))

−εθ′′j,ε + θj,ε = Rj,ε =⇒ −εθ′′εn + θεn = Rεn

where

Rεn =

n
∑

j=0

εjRj,ε

Rj,ε = −εθlj (ξl)σ
′′(x)− 2ε

1√
ε
(θlj )

′(ξl)σ
′(x)− εθrj (ξr )σ

′′(1− x)− 2ε
1√
ε
(θrj )

′(ξr )σ
′(1− x).

Each Rj,ε is an exponentially small term (as seen previously for j = 0), thus

∥Rεn∥L2(0,1) ≤ Cεm.
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Asymptotic expansions
Reaction-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε + wn,ε = εn+1

f
(2n+2) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(28)
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Asymptotic expansions
Reaction-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε + wn,ε = εn+1

f
(2n+2) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(28)

Multiplying by wn,ε and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) + ∥wn,ε∥2L2(0,1) ≤ εn+1∥f (2n+2)∥L2(0,1)∥wn,ε∥L2(0,1) + ∥Rεn∥L2(0,1)∥wn,ε∥L2(0,1)

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C 2

2
ε2(n+1) +

1

2
∥wn,ε∥2L2(0,1)
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Asymptotic expansions
Reaction-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε + wn,ε = εn+1

f
(2n+2) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(28)

Multiplying by wn,ε and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) + ∥wn,ε∥2L2(0,1) ≤ εn+1∥f (2n+2)∥L2(0,1)∥wn,ε∥L2(0,1) + ∥Rεn∥L2(0,1)∥wn,ε∥L2(0,1)

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C 2

2
ε2(n+1) +

1

2
∥wn,ε∥2L2(0,1)

hence

ε∥w ′
n,ε∥2L2(0,1) + ∥wn,ε∥2L2(0,1) ≤ Cε2(n+1).
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Asymptotic expansions
Reaction-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε + wn,ε = εn+1

f
(2n+2) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(28)

Multiplying by wn,ε and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) + ∥wn,ε∥2L2(0,1) ≤ εn+1∥f (2n+2)∥L2(0,1)∥wn,ε∥L2(0,1) + ∥Rεn∥L2(0,1)∥wn,ε∥L2(0,1)

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C 2

2
ε2(n+1) +

1

2
∥wn,ε∥2L2(0,1)

hence

ε∥w ′
n,ε∥2L2(0,1) + ∥wn,ε∥2L2(0,1) ≤ Cε2(n+1).

It follows, since wn,ε ∈ H1
0 (0, 1), that

∥wn,ε∥L2(0,1) ≤ Cεn+1

∥wn,ε∥H1(0,1) ≤ Cεn+
1
2 .
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Asymptotic expansions
Reaction-diffusion equation

Theorem

Assume that f ∈ H2n+2(0, 1). Let uε be the solution of

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(29)

Then there exists a constant C > 0 independent of ε such that

∥uε − (uεn + θεn)∥L2(0,1) ≤ Cεn+1,

∥uε − (uεn + θεn)∥H1(0,1) ≤ Cεn+
1
2 .
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Asymptotic expansions
Reaction-diffusion equation

Theorem

Assume that f ∈ H2n+2(0, 1). Let uε be the solution of

{

−εu′′
ε + uε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(29)

Then there exists a constant C > 0 independent of ε such that

∥uε − (uεn + θεn)∥L2(0,1) ≤ Cεn+1,

∥uε − (uεn + θεn)∥H1(0,1) ≤ Cεn+
1
2 .

Remark
We can show the same result for the approximation using approximate correctors, i.e.
replacing θεn by

n
∑

j=0

εj
(

θlj

(

x√
ε

)

+ θrj

(1− x√
ε

))

,

since the difference is an exponentially small term.
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Asymptotic expansions
Convection-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θ
(

x

ε

)

σ(x) (30)
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Asymptotic expansions
Convection-diffusion equation

An approximation of the solution was given by

uε(x) ≈ u0(x) + θε(x) = u0(x) + θ
(

x

ε

)

σ(x) (30)

We generalize the asymptotic expansions in powers of ε:

uε(x) ≈
∞
∑

j=0

εj
(

uj + θj,ε
)

≈
∞
∑

j=0

εj
(

uj(x) + θj
(

x

ε

))

(31)

where θj(ξ) →
ξ→∞

0 and dk

dξk
θj(ξ) →

ξ→∞
0.
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f

Order ε0: −(θ1)
′′(ξ)− u′

0(x)− θ′1(ξ) = f
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f

Order ε0: −(θ1)
′′(ξ)− u′

0(x)− θ′1(ξ) = f

{

−u
′
0 = f

u0(1) = 0

{

−(θ1)
′′ − θ′1 = 0

θ1(0) = −u1(0)
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f

Order ε0: −(θ1)
′′(ξ)− u′

0(x)− θ′1(ξ) = f

{

−u
′
0 = f

u0(1) = 0

{

−(θ1)
′′ − θ′1 = 0

θ1(0) = −u1(0)

Order εj , j ≥ 1: −u′′
j−1 − (θj+1)

′′(ξ)− u′
j (x)− θ′j+1(ξ) = 0
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f

Order ε0: −(θ1)
′′(ξ)− u′

0(x)− θ′1(ξ) = f

{

−u
′
0 = f

u0(1) = 0

{

−(θ1)
′′ − θ′1 = 0

θ1(0) = −u1(0)

Order εj , j ≥ 1: −u′′
j−1 − (θj+1)

′′(ξ)− u′
j (x)− θ′j+1(ξ) = 0

{

−u
′
j = u

′′
j−1 = (−1)j f (j)

uj(1) = 0

{

−(θj+1)
′′ − θ′j+1 = 0

θj+1(0) = −uj+1(0)
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Asymptotic expansions
Convection-diffusion equation

We substitute in the convection-diffusion equation and identify each power of ε:

−ε
(

∞
∑

j=0

ε
j
(

u
′′
j (x) +

1

ε2
(θj )

′′
( x

ε

)))

−
∞
∑

j=0

ε
j
(

u
′
j (x) +

1

ε
θ
′
j

( x

ε

))

= f

Order ε0: −(θ1)
′′(ξ)− u′

0(x)− θ′1(ξ) = f

{

−u
′
0 = f

u0(1) = 0

{

−(θ1)
′′ − θ′1 = 0

θ1(0) = −u1(0)

Order εj , j ≥ 1: −u′′
j−1 − (θj+1)

′′(ξ)− u′
j (x)− θ′j+1(ξ) = 0

{

−u
′
j = u

′′
j−1 = (−1)j f (j)

uj(1) = 0

{

−(θj+1)
′′ − θ′j+1 = 0

θj+1(0) = −uj+1(0)

We obtain θj(ξ) = −uj(0)e
−ξ.
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Asymptotic expansions
Convection-diffusion equation

We localize the approximate corrector and define the corrector

θj,ε(x) = θj
(

x

ε

)

σ(x).
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Asymptotic expansions
Convection-diffusion equation

We localize the approximate corrector and define the corrector

θj,ε(x) = θj
(

x

ε

)

σ(x).

and

uεn =

n
∑

j=0

εjuj , θεn =

n
∑

j=0

εjθj,ε.
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Asymptotic expansions
Convection-diffusion equation

We localize the approximate corrector and define the corrector

θj,ε(x) = θj
(

x

ε

)

σ(x).

and

uεn =

n
∑

j=0

εjuj , θεn =

n
∑

j=0

εjθj,ε.

The error function at order n is

wn,ε = uε − (uεn + θεn).

We are going to write the equation satisfied by wn,ε in order to deduce an error estimate
with respect to ε.
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Asymptotic expansions
Convection-diffusion equation

We write the equation satisfied by each term:

−u
′
0 = f

−u
′′
j−1 − u

′
j = 0

=⇒ −εu′′
εn − u

′
εn = f + εn+1

u
′
n+1 = f − εn+1(−1)n+1

f
(n+1)
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Asymptotic expansions
Convection-diffusion equation

We write the equation satisfied by each term:

−u
′
0 = f

−u
′′
j−1 − u

′
j = 0

=⇒ −εu′′
εn − u

′
εn = f + εn+1

u
′
n+1 = f − εn+1(−1)n+1

f
(n+1)

−εθ′′j,ε − θ′j,ε = Rj,ε =⇒ −εθ′′εn − θ′εn = Rεn
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Asymptotic expansions
Convection-diffusion equation

We write the equation satisfied by each term:

−u
′
0 = f

−u
′′
j−1 − u

′
j = 0

=⇒ −εu′′
εn − u

′
εn = f + εn+1

u
′
n+1 = f − εn+1(−1)n+1

f
(n+1)

−εθ′′j,ε − θ′j,ε = Rj,ε =⇒ −εθ′′εn − θ′εn = Rεn

where

Rεn =

n
∑

j=0

εjRj,ε

Rj,ε = −εθj(ξ)σ
′′(x)− 2ε

1

ε
θ′j (ξ)σ

′(x)− θj(ξ)σ
′(x).
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Asymptotic expansions
Convection-diffusion equation

We write the equation satisfied by each term:

−u
′
0 = f

−u
′′
j−1 − u

′
j = 0

=⇒ −εu′′
εn − u

′
εn = f + εn+1

u
′
n+1 = f − εn+1(−1)n+1

f
(n+1)

−εθ′′j,ε − θ′j,ε = Rj,ε =⇒ −εθ′′εn − θ′εn = Rεn

where

Rεn =

n
∑

j=0

εjRj,ε

Rj,ε = −εθj(ξ)σ
′′(x)− 2ε

1

ε
θ′j (ξ)σ

′(x)− θj(ξ)σ
′(x).

Each Rj,ε is an exponentially small term (as seen previously for j = 0), thus

∥Rεn∥L2(0,1) ≤ Cεm.
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Asymptotic expansions
Convection-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε − w

′
n,ε = εn+1(−1)n+1

f
(n+1) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(32)
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Asymptotic expansions
Convection-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε − w

′
n,ε = εn+1(−1)n+1

f
(n+1) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(32)

Multiplying by wn,εe
x and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) +

1− ε

2
∥wn,ε∥2L2(0,1) ≤ Cεn+1∥f (n+1)∥L2(0,1)∥wn,ε∥L2(0,1) + C∥Rεn∥L2(0,1)∥wn,ε∥L

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C
2ε2(n+1) +

1

4
∥wn,ε∥2L2(0,1)

Bouchra Bensiali Singular perturbations and boundary layers June 17–20, 2024 CIRM 36 / 42



Asymptotic expansions
Convection-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε − w

′
n,ε = εn+1(−1)n+1

f
(n+1) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(32)

Multiplying by wn,εe
x and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) +

1− ε

2
∥wn,ε∥2L2(0,1) ≤ Cεn+1∥f (n+1)∥L2(0,1)∥wn,ε∥L2(0,1) + C∥Rεn∥L2(0,1)∥wn,ε∥L

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C
2ε2(n+1) +

1

4
∥wn,ε∥2L2(0,1)

hence

ε∥w ′
n,ε∥2L2(0,1) +

1− 2ε

4
∥wn,ε∥2L2(0,1) ≤ Cε2(n+1).
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Asymptotic expansions
Convection-diffusion equation

The equation for wn,ε is then
{

−εw ′′
n,ε − w

′
n,ε = εn+1(−1)n+1

f
(n+1) − Rεn, 0 < x < 1

wn,ε = 0, at x = 0, 1.
(32)

Multiplying by wn,εe
x and integrating by parts, we obtain

ε∥w ′
n,ε∥2L2(0,1) +

1− ε

2
∥wn,ε∥2L2(0,1) ≤ Cεn+1∥f (n+1)∥L2(0,1)∥wn,ε∥L2(0,1) + C∥Rεn∥L2(0,1)∥wn,ε∥L

≤ Cεn+1∥wn,ε∥L2(0,1)

≤ C
2ε2(n+1) +

1

4
∥wn,ε∥2L2(0,1)

hence

ε∥w ′
n,ε∥2L2(0,1) +

1− 2ε

4
∥wn,ε∥2L2(0,1) ≤ Cε2(n+1).

It follows, since wn,ε ∈ H1
0 (0, 1), that

∥wn,ε∥L2(0,1) ≤ Cεn+1

∥wn,ε∥H1(0,1) ≤ Cεn+
1
2 .
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Asymptotic expansions
Convection-diffusion equation

Theorem

Assume that f ∈ Hn+1(0, 1). Let uε be the solution of

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(33)

Then there exists a constant C > 0 independent of ε such that

∥uε − (uεn + θεn)∥L2(0,1) ≤ Cεn+1,

∥uε − (uεn + θεn)∥H1(0,1) ≤ Cεn+
1
2 .
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Asymptotic expansions
Convection-diffusion equation

Theorem

Assume that f ∈ Hn+1(0, 1). Let uε be the solution of

{

−εu′′
ε − u

′
ε = f , 0 < x < 1,

uε(0) = uε(1) = 0.
(33)

Then there exists a constant C > 0 independent of ε such that

∥uε − (uεn + θεn)∥L2(0,1) ≤ Cεn+1,

∥uε − (uεn + θεn)∥H1(0,1) ≤ Cεn+
1
2 .

Remark
We can show the same result for the approximation using approximate correctors, i.e.
replacing θεn by

n
∑

j=0

εjθj
(

x

ε

)

,

since the difference is an exponentially small term.
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Overview

1 Singular perturbations: examples and concepts

2 Singular perturbations: asymptotic expansions

3 Penalization method for Dirichlet boundary conditions
→ Blackboard

4 Penalization method for Neumann or Robin boundary conditions
→ Notes
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Errata

Some errors found their way into the course videos: some were corrected in the
corresponding slide, others are given/corrected below. Viewers are encouraged to find
them by themselves.

∣

∣ε
∫ 1

0
u′
εv

′∣
∣ ≤ √

ε∥√εu′
ε∥L2∥v ′∥L2 ≤ C

√
ε → 0 when ε → 0. (video related to slide

9)

For θl( x√
ε
) = −u0(0)e

− x√
ε for instance, (θl)′( x√

ε
) = u0(0)e

− x√
ε since

θl(ξ) = −u0(0)e
−ξ. (video related to slide 13)

Poincaré inequality was given in the wrong direction (video related to slide 22).
If we try to get something by multiplying by wε and intergating by parts
(convection-diffusion case) + using Poincaré inequality (∥wε∥L2 ≤ C∥w ′

ε∥L2), we
get for instance

ε∥w ′
ε∥2L2 ≤ Cε∥wε∥L2 ≤ Cε∥w ′

ε∥L2
which only gives ∥w ′

ε∥L2 ≤ C and does not allow to conclude.

In high dimension (last video), under suitable assumptions, ∇W0 · v + αW 0 = g is
well posed in ω if we impose the value of W 0 on Γ− = {x ∈ ∂ω, v · νω ≤ 0}
(boundary part such that v is going inward) (or if we impose the value of W 0 on
Γ+ = {x ∈ ∂ω, v · νω ≥ 0} (boundary part such that v is going outward)). We
cannot, in general, impose the value of W 0 everywhere on ∂ω (cf. 1d case).
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Errata

Some errors found their way into the course videos: some were corrected in the
corresponding slide, others are given/corrected below. Viewers are encouraged to find
them by themselves.
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∣ε
∫ 1

0
u′
εv

′∣
∣ ≤ √

ε∥√εu′
ε∥L2∥v ′∥L2 ≤ C

√
ε → 0 when ε → 0. (video related to slide
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For θl( x√
ε
) = −u0(0)e

− x√
ε for instance, (θl)′( x√

ε
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− x√
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θl(ξ) = −u0(0)e
−ξ. (video related to slide 13)

Poincaré inequality was given in the wrong direction (video related to slide 22).
If we try to get something by multiplying by wε and intergating by parts
(convection-diffusion case) + using Poincaré inequality (∥wε∥L2 ≤ C∥w ′

ε∥L2), we
get for instance

ε∥w ′
ε∥2L2 ≤ Cε∥wε∥L2 ≤ Cε∥w ′

ε∥L2
which only gives ∥w ′

ε∥L2 ≤ C and does not allow to conclude.

In high dimension (last video), under suitable assumptions, ∇W0 · v + αW 0 = g is
well posed in ω if we impose the value of W 0 on Γ− = {x ∈ ∂ω, v · νω ≤ 0}
(boundary part such that v is going inward) (or if we impose the value of W 0 on
Γ+ = {x ∈ ∂ω, v · νω ≥ 0} (boundary part such that v is going outward)). We
cannot, in general, impose the value of W 0 everywhere on ∂ω (cf. 1d case).
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Thank you for your attention

Feel free to send me any questions or comments



Introduction to singular perturbations and boundary

layers

Penalization method for Neumann or Robin boundary conditions

Bouchra Bensiali

August 6, 2024

A Boundary layer approach in the one-dimensional case

The one-dimensional case was studied in [1]. Here, we present an alternative proof for the convergence of the
penalization method based on a boundary layer approach adapted from the one used in [3] for Dirichlet boundary
conditions. The advantage of the boundary layer approach is that it is generalizable in higher dimension [2],
unlike the approach used in [1] which was based on the explicit computation of the solution.

We thus consider the following one-dimensional problem with Neumann or Robin boundary conditions at
x = 1 {

−u′′ + u = f in U = ]1, 2[

−u′(1) + αu(1) = g(1), u(2) = 0,
(1)

where f ∈ L2(]1, 2[), g(1) ∈ R and α ≥ 0 are given. The corresponding penalized problem reads




−u′′

ε + uε +
χ

ε
(−u′

ε + αuε − g(1)) = (1− χ)f in ]0, 2[

uε(0) = 0, uε(2) = 0,
(2)

where ε > 0 is a small parameter (the penalization parameter), and χ is the characteristic function of the
obstacle ω = ]0, 1[. The penalized problem (2) is equivalent to the following system





−w′′

ε + wε +
1

ε
(−w′

ε + αwε − g(1)) = 0 in ω (3a)

−v′′ε + vε = f in U (3b)

wε(1) = vε(1) (3c)

w′

ε(1) = v′ε(1) (3d)

wε(0) = 0 (3e)

vε(2) = 0 (3f)

where we distinguished the solution wε inside the obstacle ω = ]0, 1[ from the solution vε in the fluid domain
U = ]1, 2[.

Based on our understanding of the one-dimensional case, we consider the following ansatz for the solution
in terms of asymptotic expansions:




vε(x) = V 0(x) + εV 1(x) + ε2V 2(x) + . . . ,

wε(x) = W 0
(
x,

x

ε

)
+ εW 1

(
x,

x

ε

)
+ ε2W 2

(
x,

x

ε

)
+ . . .

(4)

where the profile terms inside the obstacle have the form





W i(x, z) = W
i
(x) + θ(x)W̃ i(x, z)

where ∀i, k ≥ 0, ∂k
z W̃

i −−−−−→
z→+∞

0, ∀x ∈ ω

and θ ∈ C∞(ω̄) such that θ ≡ 1 in a neighborhood ω0 of 0 and supp(θ) ⊂ [0, δ],

(5)

where 0 < δ < 1. This ansatz reflects the presence of a localized boundary layer near the boundary x = 0 and
no boundary layer at the interface x = 1 between the fluid and the obstacle.
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A.1 Determination of profiles

For a function (x, z) 7→ W (x, z), we denote the derivatives with respect to the space variable x as W ′, W ′′, . . .

and the derivatives with respect to the boundary layer variable z as Wz, Wzz, . . .. Thus the function x 7→
w(x) = W

(
x, x

ε

)
satisfies





w′(x) = W ′

(
x,

x

ε

)
+

1

ε
Wz

(
x,

x

ε

)

w′′(x) = W ′′

(
x,

x

ε

)
+

1

ε
(W ′)z

(
x,

x

ε

)
+

1

ε
(Wz)

′

(
x,

x

ε

)
+

1

ε2
Wzz

(
x,

x

ε

)

= W ′′

(
x,

x

ε

)
+

2

ε
(Wz)

′

(
x,

x

ε

)
+

1

ε2
Wzz

(
x,

x

ε

)
.

(6)

In the following, we introduce formally the expressions (4) in the system (3a)–(3f) and identify the terms
corresponding to each power of ε. To simplify the formal calculations, we assume in the following θ(x) = 1

everywhere in (5) and an exponential decrease of ∂k
z W̃

i(x, z) with respect to the variable z, this will be made
rigorous afterwards.

A.1.1 Asymptotic expansion of Eq. (3a) inside the obstacle ω

• Order ε−2: identifying the terms corresponding to the power −2 of ε leads to

−W 0
zz −W 0

z = 0.

Using the decomposition (5) one obtains

−W
0

zz − W̃ 0
zz −W

0

z − W̃ 0
z = 0,

which leads to, as W
0
does not depend on z,

−W̃ 0
zz − W̃ 0

z = 0 in ω × R
+. (7)

• Order ε−1:
−W 1

zz − 2(W 0
z )

′ − (W 0)′ + αW 0 − g(1)−W 1
z = 0,

which, by using hypothesis (5) and taking the limit when z → +∞, leads to

−(W
0
)′ + αW

0
− g(1) = 0 in ω, (8)

and by difference, we obtain

−W̃ 1
zz − 2(W̃ 0

z )
′ − (W̃ 0)′ + αW̃ 0 − W̃ 1

z = 0 in ω × R
+. (9)

• Order ε0:
−W 2

zz − 2(W 1
z )

′ − (W 0)′′ +W 0 −W 2
z − (W 1)′ + αW 1 = 0,

and again using the same reasoning as above, by using hypothesis (5) and z → +∞, we obtain

−(W
0
)′′ +W

0
+ αW

1
− (W

1
)′ = 0 in ω, (10)

and by difference,

−W̃ 2
zz − 2(W̃ 1

z )
′ − (W̃ 0)′′ + W̃ 0 − W̃ 2

z − (W̃ 1)′ + αW̃ 1 = 0 in ω × R
+. (11)

• Order ε: from
−W 3

zz − 2(W 2
z )

′ − (W 1)′′ +W 1 −W 3
z − (W 2)′ + αW 2 = 0,

we deduce once again as before,

−(W
1
)′′ +W

1
− (W

2
)′ + αW

2
= 0 in ω, (12)

and by difference,

−W̃ 3
zz − 2(W̃ 2

z )
′ − (W̃ 1)′′ + W̃ 1 − W̃ 3

z − (W̃ 2)′ + αW̃ 2 = 0 in ω × R
+. (13)

2



A.1.2 Asymptotic expansion of Eq. (3b) inside the fluid domain U

• Order ε0:
−(V 0)′′ + V 0 = f in U . (14)

• Order ε1:
−(V 1)′′ + V 1 = 0 in U . (15)

• Order ε2:
−(V 2)′′ + V 2 = 0 in U . (16)

A.1.3 Asymptotic expansion of Eq. (3c) and (3d) (transmission conditions at x = 1)

We obtain simply, recalling the exponential decrease of the boundary layer terms

V 0(1) = W
0
(1), V 1(1) = W

1
(1), V 2(1) = W

2
(1). (17)

and
(V 0)′(1) = (W

0
)′(1), (V 1)′(1) = (W

1
)′(1), (V 2)′(1) = (W

2
)′(1). (18)

A.1.4 Asymptotic expansion of Eq. (3e) and (3f) (Dirichlet boundary conditions at x = 0 and
x = 2)





W̃ 0(0, 0) +W
0
(0) = 0

W̃ 1(0, 0) +W
1
(0) = 0

W̃ 2(0, 0) +W
2
(0) = 0

(19)

and
V 0(2) = V 1(2) = V 2(2) = 0. (20)

A.2 Resolution of the profile equations

Here, we look for solutions to the equations determined previously, that will form the terms of the asymptotic
expansion (4).

A.2.1 Determination of V 0 and W 0

From (14), (8), (17), (18) and (20), we obtain that V 0 is solution to

{
−(V 0)′′ + V 0 = f in U = ]1, 2[

−(V 0)′(1) + αV 0(1) = −(W
0
)′(1) + αW

0
(1) = g(1), V 0(2) = 0,

(21)

i.e. V 0 = u the solution of the initial problem (1), and that W
0
is solution to

{
−(W

0
)′ + αW

0
= g(1) in ω = ]0, 1[

W
0
(1) = V 0(1).

(22)

From (7) and the fact that W̃ 0 tends to 0 as z → +∞ , we obtain

W̃ 0(x, z) = w0(x)e−z in ω × R
+,

where w0 is the value of W̃ 0 at z = 0. Using (19), we have W̃ 0(0, 0) = −W
0
(0). We extend this boundary

condition to all ω and choose W̃ 0(x, 0) = −W
0
(0). This implies w0(x) = −W

0
(0) and thus

W̃ 0(x, z) = −W
0
(0)e−z in ω × R

+. (23)
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A.2.2 Determination of V 1 and W 1

Similarly, from (15), (10), (17), (18) and (20), we obtain that V 1 is solution to




−(V 1)′′ + V 1 = 0 in U = ]1, 2[

−(V 1)′(1) + αV 1(1) = −(W
1
)′(1) + αW

1
(1) = (W

0
)′′(1)−W

0
(1)

V 1(2) = 0,

(24)

and that W
1
is solution to {

−(W
1
)′ + αW

1
= (W

0
)′′ −W

0
in ω = ]0, 1[

W
1
(1) = V 1(1).

(25)

From (9), we have

−W̃ 1
zz − W̃ 1

z = 2(W̃ 0
z )

′ + (W̃ 0)′ − αW̃ 0 = αW
0
(0)e−z in ω × R

+,

using the obtained expression of W̃ 0 (23). The solution which tends to 0 as z → +∞ is given by

W̃ 1(x, z) = w1(x)e−z + αW
0
(0)ze−z in ω × R

+,

where w1 is the value of W̃ 1 at z = 0, to be determined. Again, using (19), we have W̃ 1(0, 0) = −W
1
(0). We

extend this boundary condition to all ω by setting W̃ 1(x, 0) = −W
1
(0). This choice leads to w1(x) = −W

1
(0)

and thus
W̃ 1(x, z) = −W

1
(0)e−z + αW

0
(0)z e−z in ω × R

+. (26)

A.2.3 Determination of V 2 and W 2

Using the same reasoning as before, from (16), (12), (17), (18) and (20), we obtain that V 2 is solution to




−(V 2)′′ + V 2 = 0 in U = ]1, 2[

−(V 2)′(1) + αV 2(1) = −(W
2
)′(1) + αW

2
(1) = (W

1
)′′(1)−W

1
(1)

V 2(2) = 0,

(27)

and that W
2
is solution to {

−(W
2
)′ + αW

2
= (W

1
)′′ −W

1
in ω = ]0, 1[

W
2
(1) = V 2(1).

(28)

From (11), we have

−W̃ 2
zz − W̃ 2

z = 2(W̃ 1
z )

′ + (W̃ 0)′′ − W̃ 0 + (W̃ 1)′ − αW̃ 1 in ω × R
+

= −W̃ 0 − αW̃ 1

= W
0
(0)e−z + αW

1
(0)e−z − α2W

0
(0)z e−z

= (W
0
(0) + αW

1
(0))e−z − α2W

0
(0)z e−z

= c e−z + d z e−z

using the obtained expressions of W̃ 0 (23) and W̃ 1 (26). The solution which tends to 0 as z → +∞ is given by

W̃ 2(x, z) = w2(x)e−z + (c+ d)z e−z +
d

2
z2 e−z in ω × R

+,

where w2 is the value of W̃ 2 at z = 0, to be determined. Once again, using (19), we have W̃ 2(0, 0) = −W
2
(0). We

extend this boundary condition to all ω by setting W̃ 2(x, 0) = −W
2
(0). This choice leads to w2(x) = −W

2
(0)

and thus

W̃ 2(x, z) = −W
2
(0)e−z + (W

0
(0) + αW

1
(0)− α2W

0
(0))z e−z

−
α2

2
W

0
(0)z2 e−z in ω × R

+. (29)

In this one-dimensional setting, all the profile equations are well-posed with suitable regularity: V 0 ∈ C1(U),

V 1, V 2 ∈ C∞(U), W
i
∈ C∞(ω) and W̃ i ∈ C∞(ω × R

+).
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A.3 Convergence of the asymptotic expansion

We search for a solution of the penalized problem (2) in the following form




wε(x) = θ(x)W̃ 0
(
x,

x

ε

)
+ εθ(x)W̃ 1

(
x,

x

ε

)
+ ε2θ(x)W̃ 2

(
x,

x

ε

)

+W
0
(x) + εW

1
(x) + ε2W

2
(x) + εwr

ε(x) in ω

vε(x) = V 0(x) + εV 1(x) + ε2V 2(x) + εvrε(x) in U ,

(30)

were W̃ i, W
i
and V i are the profile terms constructed previously, and wr

ε and vrε are the remainder terms that
we will estimate in the following.

We use the following notations:
{
Wapp = θw̃0 + εθw̃1 + ε2θw̃2 +W

0
+ εW

1
+ ε2W

2

Vapp = V 0 + εV 1 + ε2V 2,
(31)

where w̃i(x) = W̃ i
(
x, x

ε

)
, so that {

wε = Wapp + εwr
ε in ω

vε = Vapp + εvrε in U .

The aim of the following subsections is to show that the remainders wr
ε and vrε are bounded in H1 indepen-

dently of ε, from which we will conclude that

∥vε − V 0∥H1(U) = O(ε), (32)

that is the convergence of the solution of the penalized problem (2) towards the solution of the initial problem (1)
inside the fluid domain. On the other hand, we will obtain that

∥wε −Wapp∥H1(ω) = O(ε), (33)

that is the presence of a boundary layer near the left boundary (at x = 0). In particular far from the boundary
we have

∥wε −W
0
∥H1(]δ,1[) = O(ε), (34)

and W
0
is the limit solution in the complementary domain. We thus recover the results obtained in [1] using a

boundary layer approach (in fact, we obtain a finer description of what happens in the obstacle domain, which
was not carried out in [1]).

A.3.1 Equations of the remainders

Using the equations satisfied by wε and vε, the remainders satisfy the following system




−wr
ε
′′ + wr

ε +
1

ε
(−wr

ε
′ + αwr

ε) = Rε
obst in ω (35a)

−vrε
′′ + vrε = Rε

flu in U (35b)

wr
ε(1) = vrε(1) (35c)

wr
ε
′(1) = vrε

′(1) (35d)

wr
ε(0) = Rε

boundary (35e)

vrε(2) = 0, (35f)

where

Rε
obst =

1

ε
W ′′

app −
1

ε
Wapp +

1

ε2
W ′

app −
α

ε2
Wapp +

g(1)

ε2

=
1

ε
W ′′

app +
1

ε2
W ′

app −
(1
ε
+

α

ε2

)
Wapp +

g(1)

ε2

Rε
flu =

1

ε
(f + V ′′

app − Vapp)

=
1

ε
(f + V 0′′ + εV 1′′ + ε2V 2′′ − V 0 − εV 1 − ε2V 2) = 0

Rε
boundary = −

1

ε
Wapp(0)

= −
1

ε
(W̃ 0(0, 0) + εW̃ 1(0, 0) + ε2W̃ 2(0, 0) +W

0
(0) + εW

1
(0) + ε2W

2
(0)) = 0.
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To estimate the remainders, we need to estimate the right-hand sides of the equations, namely Rε
obst.

Using (31), one has

W ′

app = θ′w̃0 + θw̃0′ + εθ′w̃1 + εθw̃1′ + ε2θ′w̃2 + ε2θw̃2′ +W
0′
+ εW

1′
+ ε2W

2′

W ′′

app = θ′′w̃0 + 2θ′w̃0′ + θw̃0′′ + εθ′′w̃1 + 2εθ′w̃1′ + εθw̃1′′ + ε2θ′′w̃2 + 2ε2θ′w̃2′ + ε2θw̃2′′

+W
0′′

+ εW
1′′

+ ε2W
2′′
.

Using (6) and the fact that W̃ i depend only on z, we obtain

Rε
obst =

1

ε
(θ′′W̃ 0 + 2θ′

W̃ 0
z

ε
+ θ

W̃ 0
zz

ε2
+ εθ′′W̃ 1 + 2εθ′

W̃ 1
z

ε
+ εθ

W̃ 1
zz

ε2
+ ε2θ′′W̃ 2 + 2ε2θ′

W̃ 2
z

ε
+ ε2θ

W̃ 2
zz

ε2

+W
0′′

+ εW
1′′

+ ε2W
2′′
) +

1

ε2
(θ′W̃ 0 + θ

W̃ 0
z

ε
+ εθ′W̃ 1 + εθ

W̃ 1
z

ε
+ ε2θ′W̃ 2 + ε2θ

W̃ 2
z

ε
+W

0′

+ εW
1′
+ ε2W

2′
)−

(1
ε
+

α

ε2

)
(θW̃ 0 + εθW̃ 1 + ε2θW̃ 2 +W

0
+ εW

1
+ ε2W

2
) +

g(1)

ε2

=
θ′′

ε
W̃ 0 +

2θ′

ε2
W̃ 0

z +
θ

ε3
W̃ 0

zz + θ′′W̃ 1 +
2θ′

ε
W̃ 1

z +
θ

ε2
W̃ 1

zz + εθ′′W̃ 2 + 2θ′W̃ 2
z +

θ

ε
W̃ 2

zz

+
1

ε
W

0′′
+W

1′′
+ εW

2′′
+

θ′

ε2
W̃ 0 +

θ

ε3
W̃ 0

z +
θ′

ε
W̃ 1 +

θ

ε2
W̃ 1

z + θ′W̃ 2 +
θ

ε
W̃ 2

z +
1

ε2
W

0′

+
1

ε
W

1′
+W

2′
−

θ

ε
W̃ 0 − θW̃ 1 − εθW̃ 2 −

1

ε
W

0
−W

1
− εW

2

−
αθ

ε2
W̃ 0 −

αθ

ε
W̃ 1 − αθW̃ 2 −

α

ε2
W

0
−

α

ε
W

1
− αW

2
+

g(1)

ε2
.

Using the equations satisfied by the profile terms, different terms simplify in the previous expression and it
remains

Rε
obst =

θ′′

ε
W̃ 0 +

2θ′

ε2
W̃ 0

z + θ′′W̃ 1 +
2θ′

ε
W̃ 1

z + εθ′′W̃ 2 + 2θ′W̃ 2
z + εW

2′′

+
θ′

ε2
W̃ 0 +

θ′

ε
W̃ 1 + θ′W̃ 2 − θW̃ 1 − εθW̃ 2 − εW

2
− αθW̃ 2.

Since W̃ i(x, z) are of the form Pi(z)e
−z where Pi is a polynomial, and Pi(z)e

−z are bounded in R
+, W̃ i

(
x, x

ε

)

are bounded in ω independently of ε, thus we have ∀x ∈ ω

∣∣∣−θ(x)W̃ 1
(
x,

x

ε

)
− αθ(x)W̃ 2

(
x,

x

ε

)∣∣∣ ≤ C,

and
∣∣∣−εθ(x)W̃ 2

(
x,

x

ε

)∣∣∣ ≤ Cε.

Also,
∣∣∣εW 2′′

(x)− εW
2
(x)

∣∣∣ ≤ Cε.

The remaining terms are of the form 1
εj
θ′(x)W̃ i

(
x, x

ε

)
or 1

εj
θ′(x)W̃ i

z

(
x, x

ε

)
or 1

εj
θ′′(x)W̃ i

(
x, x

ε

)
or 1

εj
θ′′(x)W̃ i

z

(
x, x

ε

)

for j ∈ Z. W̃ i
z(x, z) are also of the form Qi(z)e

−z where Qi is a polynomial. The terms under study are thus con-
stituted of terms of the from C 1

εj
θ′(x)

(
x
ε
)ke−

x
ε or C 1

εj
θ′′(x)

(
x
ε
)ke−

x
ε for k ∈ N. Since θ ≡ 1 in a neighborhood

of 0, these terms are zero if x ≤ δ0 for a well-chosen δ0 > 0. These terms are thus bounded by

C
1

εj+k
e−

δ0
ε ≤ Cε,

since for all ℓ ∈ Z, εℓe−
δ0
ε → 0 as ε → 0+.

In conclusion, we have the following estimate

∥Rε
obst∥L2(ω) ≤ C. (36)

In the following, we will need a finer estimate: since Rε
obst reduces to εW

2′′
− εW

2
outside of the support of

θ, we have

∥Rε
obst∥L2(]0,δ[) ≤ C (37)

∥Rε
obst∥L2(]δ,1[) ≤ Cε. (38)
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A.3.2 Estimate of the remainders

The last step is to estimate the remainders using some energy estimates. Unfortunately, multiplying by the
remainders and integrating by parts yields an interface term of the form 1

ε
(wr

ε)
2(1) (with the wrong sign) that

is not easy to control. Inspired by the approaches used in boundary layer methods in the case of advection-
diffusion problems [6, 5, 4] where we multiply by test functions of the form wr

ε(x)e
±x, we will rather multiply

by weighted remainders as test functions where the weights have to be determined in order to get rid of the
interface terms (between the fluid and the obstacle). More precisely, we multiply Eq. (35b) by vrεpε and we
integrate over U = ]1, 2[, this yields

−

∫ 2

1

vrε
′′
vrεpε +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′(vrεpε)

′ − [vrε
′
vrεpε]

2
1 +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′
vrε

′
pε +

∫ 2

1

vrε
′
vrεp

′

ε + vrε
′(1)vrε(1)pε(1) +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′2
pε +

∫ 2

1

(vrε2
2

)′

p′ε + vrε
′(1)vrε(1)pε(1) +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′2
pε −

∫ 2

1

vrε
2

2
p′′ε +

[vrε2
2

p′ε

]2
1
+ vrε

′(1)vrε(1)pε(1) +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′2
pε −

∫ 2

1

vrε
2

2
p′′ε −

vrε
2(1)

2
p′ε(1) + vrε

′(1)vrε(1)pε(1) +

∫ 2

1

vrε
2
pε = 0

∫ 2

1

vrε
′2
pε +

∫ 2

1

(
pε −

p′′ε
2

)
vrε

2 −
vrε

2(1)

2
p′ε(1) + vrε

′(1)vrε(1)pε(1) = 0. (E1)

Similarly, we multiply Eq. (35a) by wr
εqε and we integrate over ω = ]0, 1[, we obtain

−

∫ 1

0

wr
ε
′′
wr

εqε +

∫ 1

0

wr
ε
2
qε −

1

ε

∫ 1

0

wr
ε
′
wr

εqε +
α

ε

∫ 1

0

wr
ε
2
qε =

∫ 1

0

Rε
obstw

r
εqε

∫ 1

0

wr
ε
′(wr

εqε)
′ − [wr

ε
′
wr

εqε]
1
0 +

∫ 1

0

wr
ε
2
qε −

1

ε

∫ 1

0

wr
ε
′
wr

εqε +
α

ε

∫ 1

0

wr
ε
2
qε =

∫ 1

0

Rε
obstw

r
εqε

∫ 1

0

wr
ε
′2
qε +

∫ 1

0

wr
ε
′
wr

εq
′

ε − wr
ε
′(1)wr

ε(1)qε(1) +

∫ 1

0

wr
ε
2
qε −

1

ε

∫ 1

0

wr
ε
′
wr

εqε +
α

ε

∫ 1

0

wr
ε
2
qε =

∫ 1

0

Rε
obstw

r
εqε

∫ 1

0

wr
ε
′2
qε +

∫ 1

0

(
q′ε −

qε

ε

)
wr

ε
′
wr

ε +
(
1 +

α

ε

)∫ 1

0

wr
ε
2
qε − wr

ε
′(1)wr

ε(1)qε(1) =

∫ 1

0

Rε
obstw

r
εqε

∫ 1

0

wr
ε
′2
qε −

∫ 1

0

wr
ε
2

2
+

[wr
ε
2

2

(
q′′ε −

q′ε
ε

)]1
0
+
(
1 +

α

ε

)∫ 1

0

wr
ε
2
qε − wr

ε
′(1)wr

ε(1)qε(1) =

∫ 1

0

Rε
obstw

r
εqε

∫ 1

0

wr
ε
′2
qε +

∫ 1

0

wr
ε
2
((

1 +
α

ε

)
qε −

q′′ε
2

+
q′ε
2ε

)
+

wr
ε
2(1)

2

(
q′ε(1)−

qε(1)

ε

)
− wr

ε
′(1)wr

ε(1)qε(1) =

∫ 1

0

Rε
obstw

r
εqε.

(E2)

By adding (E1) and(E2), and by choosing pε and qε such that the interface terms vanish, i.e.





pε(1) = qε(1)

p′ε(1) = q′ε(1)−
qε(1)

ε

(39)

we obtain

∫ 2

1

vrε
′2
pε +

∫ 2

1

(
pε −

p′′ε
2

)
vrε

2 +

∫ 1

0

wr
ε
′2
qε +

∫ 1

0

wr
ε
2
((

1 +
α

ε

)
qε −

q′′ε
2

+
q′ε
2ε

)
=

∫ 1

0

Rε
obstw

r
εqε. (40)
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Assume there exists pε and qε such that for sufficiently small ε > 0





(39) is satisfied

pε ≥ β > 0 in U = (1, 2)

qε ≥ β > 0 in ω = (0, 1)

pε −
p′′ε
2

≥ 0 in U

(
1 +

α

ε

)
qε −

q′′ε
2

+
q′ε
2ε

≥ 0 in ω

∥qε∥L∞(0,δ) ≤ C and ∥qε∥L∞(δ,1) ≤
C

ε
,

(41)

then from (40), we deduce, using also (37) and (38), that

β
(∫ 2

1

vrε
′2 +

∫ 1

0

wr
ε
′2
)
≤ ∥Rε

obstqε∥L2(0,1)∥w
r
ε∥L2(0,1)

≤
(
∥Rε

obstqε∥L2(0,δ) + ∥Rε
obstqε∥L2(δ,1)

)
∥wr

ε∥L2(0,1)

≤
(
∥Rε

obst∥L2(0,δ)∥qε∥L∞(0,δ) + ∥Rε
obst∥L2(δ,1)∥qε∥L∞(δ,1)

)
∥wr

ε∥L2(0,1)

≤ C∥wr
ε
′∥L2(0,1) (by Poincaré inequality (wr

ε(0) = 0))

∥vrε
′∥2L2(1,2) + ∥wr

ε
′∥2L2(0,1) ≤ C∥wr

ε
′∥L2(0,1)

≤
C2

2
+

1

2
∥wr

ε
′∥2L2(0,1) (by Young inequality)

∥vrε
′∥2L2(1,2) +

1

2
∥wr

ε
′∥2L2(0,1) ≤ C.

In conclusion, using again Poincaré inequality (vrε(2) = 0), we have established that ∥vrε∥H1(1,2) ≤ C and
∥wr

ε∥H1(0,1) ≤ C, and the convergence of the asymptotic expansion follows as explained in Subsection A.3.

A.3.2.1 Construction of suitable weight functions pε and qε We will look for supersolutions pε, qε
satisfying 




−q′′ε +
q′ε
ε

+ qε = bε ≥ 0 in ω = (0, 1)

−p′′ε + pε = aε ≥ 0 in U = (1, 2)

pε(1) = qε(1)

p′ε(1) = q′ε(1)−
qε(1)

ε

pε ≥ β > 0 in U = (1, 2)

qε ≥ β > 0 in ω = (0, 1)

∥qε∥L∞(0,δ) ≤ C and ∥qε∥L∞(δ,1) ≤
C

ε
.

(42)

It is easy to see that the solutions to (42) satisfy (41) and thus yield suitable functions to show the convergence
as explained before. First, (39) is satisfied, along with the positivity of pε, qε ≥ β > 0 and the estimates on
∥qε∥L∞ , thus we have

pε −
p′′ε
2

=
pε

2
+

−p′′ε + pε

2
≥

pε

2
≥ 0

(
1 +

α

ε

)
qε −

q′′ε
2

+
q′ε
2ε

=
α

ε
qε +

qε

2
+

1

2

(
−q′′ε +

q′ε
ε

+ qε

)
≥

(α
ε
+

1

2

)
qε ≥ 0.

Let us first outline the link between (42) and a dual problem of the penalized problem. Let φ ∈ H1
0 (Ω),

where Ω = (0, 1), then by multiplying the equations (42) by φ and integrating by parts, we obtain:

∫ 1

0

q′εφ
′ − qε

′(1)φ(1)−
1

ε

∫ 1

0

qεφ
′ +

1

ε
qε(1)φ(1) +

∫ 1

0

qεφ =

∫ 1

0

bεφ (43)

and ∫ 2

1

p′εφ
′ + pε

′(1)φ(1) +

∫ 2

1

pεφ =

∫ 2

1

aεφ. (44)
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Summing the two previous equations and using the transmission conditions, we obtain

∫ 1

0

q′εφ
′ −

1

ε

∫ 1

0

qεφ
′ +

∫ 1

0

qεφ+

∫ 2

1

p′εφ
′ +

∫ 2

1

pεφ =

∫ 1

0

bεφ+

∫ 2

1

aεφ. (45)

If we denote by rε the function whose restriction to (0, 1) is qε and whose restriction to (1, 2) is pε, this means
that rε is solution to following variational formulation





Find rε ∈ V = {v ∈ H1(0, 1), v(0) and v(2) are imposed} such that ∀φ ∈ H1
0 (0, 1)∫ 2

0

r′εφ
′ +

∫ 2

0

rεφ−
1

ε

∫ 2

0

χrεφ
′ =

∫ 1

0

bεφ+

∫ 2

1

aεφ,
(46)

which is of the form of a dual problem to the penalized problem (with α = 0) [2] where the advection term is
in a conservative form. The existence and uniqueness of the solution to the dual problem was also established
in [2] (it was used in the proof of the existence and uniqueness of the penalized problem).

Remark 1. Figure. 1 shows the solution of (46) if we impose for instance aε(x) = 0, bε(x) = 0, and qε(0) =
pε(2) = 1. We can show (using explicit caluclations and asymptotic expansions with respect to ε as in [1]) that
the other conditions in (42) (positivity of pε, qε and estimates on qε) are satisfied for ε small enough, but we
would like a construction not relying on explicit calculations, that could be extendable in higher dimension.

0.5 1.0 1.5 2.0

10

20

30

Figure 1: Plot of qε in (0, 1) and pε in (1, 2) solutions to the dual problem (46) with aε = 0, bε = 0 and
qε(0) = pε(2) = 1, for different values of ε.

We now go back to exhibit suitable supersolutions satisfying (42): we take

qε(x) = 1 +
1

ε
e

x−1

ε −
1

ε
e−

1

ε in ω = (0, 1), (47)

so that

qε(x) ≥ 1−
1

ε
e−

1

ε → 1 when ε → 0 (48)

and

−q′′ε +
q′ε
ε

+ qε = qε ≥ 0. (49)

To satisfy the transmission conditions, we choose an affine pε

pε(x) = qε(1) +
(
q′ε(1)−

qε(1)

ε

)
(x− 1) in U = (1, 2), (50)

so that

pε(2) = qε(1) + q′ε(1)−
qε(1)

ε
=

(
1−

1

ε

)(
1 +

1

ε
−

1

ε
e−

1

ε

)
+

1

ε2
= 1 +

1

ε2
e−

1

ε → 1 when ε → 0 (51)

and
−p′′ε + pε = pε ≥ min(pε(1), pε(2)) = min(qε(1), pε(2)) ≥ 0 for ε small enough. (52)

Thus the strict positivity of pε and qε for sufficiently small ε > 0. Finally, for all x ∈ (0, δ) with δ < 1,

|qε(x)| ≤ 1 +
1

ε
e

δ−1

ε −
1

ε
e−

1

ε ≤ C

9



for sufficiently small ε > 0, and, for x ∈ (δ, 1),

|qε(x)| ≤ 1 +
1

ε
−

1

ε
e−

1

ε ≤
C

ε

for sufficiently small ε, then the desired estimates on ∥qε∥L∞ . This completes the existence of suitable weight
functions pε, qε in the one-dimensional case.

1

2

1

4

1

8

1

16

0.0 0.5 1.0 1.5 2.0
x0

5

10

15

Figure 2: Plot of suitable supersolutions qε (47) in (0, 1) and pε (50) in (1, 2) satisfying (42) in the one-
dimensional case, for different values of ε.
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